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1 Introduction

The canonical pivotal voting model with two candidates, as in Palfrey and Rosenthal (1985),
Ledyard (1984) and, more recently, Borgers (2004), assumes that a citizen participates in an
election insofar as there exists a possibility that his/her vote is pivotal, that is, it changes the
result of the election. To compute the probability that his or her vote is pivotal, a constituent
needs to know the distribution of preferences for each candidate within society. In modern
democratic societies, this information is provided by electoral pollsters. Empirical evidence
suggests that pre-election polls can affect voter turnout and, ultimately, election results (see,

e.g., Bursztyn et al., 2018).

However, little is known about the incentives that pollsters have regarding the release of
pre-election poll results. In other words, can we be certain that electoral pollsters are not

manipulating poll results? Moreover, could such a strategic behavior harm society?

We remark the importance of these questions by noting that, even if society finds it desirable,
it is impossible to fully restrain pollsters from potentially misreporting information. Pollsters
can misreport information in several ways, such as rigging the sampling procedure, framing

questions in a biased way,! marking answers incorrectly or simply discarding part of the sample.

However, the behavior of a pollster might be restrained by reputational concerns: people
compare the result of the election with what they were expecting given the information released
by the pollster. If the election result is significantly different from what the information provided
by the pollster implied it would be, the quality of the pollster might be questioned. This
happened, for example, in the infamous "Dewey Defeats Truman" event? and after the 2016

U.S. presidential election, when most pollsters predicted a Clinton victory over Trump.?

Indeed, the reputation of pollsters varies considerably. For instance, ABC News’ project

! Bischoping and Schuman (1992) provides experimental evidence that even the pen used by the interviewer
to record answers can alter the answers of the respondent.

2See http://articles.latimes.com/1998 /nov/01/news/mn-38174.

3See, for instance, http://www.nytimes.com/2017/05/31/upshot/a-2016-review-why-key-state-polls-were-
wrong-about-trump.html.



FiveThirtyEight rates pollsters by "analyzing the historical accuracy of each firm’s polls along

n4

with its methodology."* This rating is then translated into a grade, from A+ to F. Pollsters are

graded F if they raise suspicions of "faked polling results."

It would only be natural to assume that better ranked polling firms are able to charge a
higher price for their services, whereas lower ranked firms, due to their perceived inaccuracy,
will have their market share and future profits hindered (even if not prosecuted and convicted
of fraud). Anecdotal evidence comes from Brazil, where polling firms are required by law
to register their price. For instance, for the presidential elections of 2018, the average price
charged by all 27 pollsters per respondent was 32 reals, while the standard deviation of the
price charged was 35 reals. The average price of the five most expensive pollsters was 98 reals.
To some degree, this large dispersion in the prices suggests that the perceived quality and

reputation of a pollster directly impacts how much a pollster is able to charge.’

The effects of pre-election polls on voter behavior have been studied in Taylor and Yildirim
(2010a) and Goeree and Grofler (2007). Both papers, using a two-candidate costly voting
model, have concluded that opinion polls may be harmful to the citizens’ expected welfare, for
stimulating the "wrong" group of citizens (that is, the group who most likely is the minority)
to vote more, while, at the same time, stimulating the group who most likely is the majority to
vote less. Moreover, the first effect is stronger than the second one. Therefore, pre-election poll
results have two negative consequences: they increase the expected aggregate voting cost and
decrease the probability that the most preferred candidate wins the election. In their models,

however, poll results are reported truthfully.

We develop a model in which, by formally introducing an electoral pollster, the poll report
is endogenously determined and is not necessarily truthful. More precisely, we suppose that
the pollster knows the true distribution of the citizens’ preferences between the two candidates,

but it may report to the public a different distribution. The pollster does not have preferences

*http:/ /projects.fivethirtyeight.com/pollster-ratings.
"This data is available at http://www.tse.jus.br/eleicoes/pesquisa-eleitorais/consulta-as-pesquisas-
registradas.



among the candidates: its objective is to be highly rated, by "getting the election right." Thus
we seek to understand how an electoral pollster concerned with its reputation might report
the pre-election poll results, given that it knows that they may alter voters’ behavior and

consequently the election result, upon which the reputation of the pollster is based.

An often-heard criticism about pollsters is that they might misreport to benefit some can-
didate. Here we show that they have incentives to misreport even in the absence of partisan
motives, but in the presence of reputational motives alone. Our main findings are that, unless
the expected number of supporters of each candidate is the same, i) for a sufficiently large
population, truthful reports do not happen, ii) the pollster always underreports the expected
number of supporters of the most preferred candidate, and iii) this misreporting of the pre-
election poll results is welfare improving relative to a truthful reporting. The first two of these
results imply that, relative to a truthful report, with a misreported poll, citizens in the ex-
pected majority group will vote with more intensity, the opposite being true for citizens in the
expected minority group. Thus, contrary to what the pivotal voting model with truthful polls
would predict, election results are not ties, in expected terms. This is the intuition behind the

third of these findings.

Once reputational concerns are brought into the picture, other conclusions of the canonical
pivotal voting model can also be revisited. A classical prediction of rational voting models is
the underdog effect, where citizens in the minority group vote with more intensity than citizens
in the majority group, as the latter have an incentive to free ride (e.g., Ledyard, 1984, and
Palfrey and Rosenthal, 1983). This result is present in and is important for the conclusions of

Taylor and Yildirim (2010a), Goeree and Grofler (2007) and Krasa and Polborn (2008).

An alternative prediction would be the presence of a bandwagon effect, where constituents
vote with a higher intensity if they realize they are in the majority.% Grillo (2017) shows that it

is possible to generate a bandwagon effect in a rational voting model if citizens are assumed to

6Besides the mentioned "bandwagon abstention effect," a "bandwagon vote choice effect" could also be
considered: some citizens may switch their preference to the candidate that ranks first in the pre-election polls
(see Morton and Ou, 2015). In our model, however, this is not a possibility, since the preference of a given
citizen regarding the two candidates is held fixed.



be risk averse.” In contrast, our work implies that, even without departing from the ubiquitous
risk-neutrality assumption, an observer who assumes that polls are always truthful would see
data consistent with the bandwagon effect, even though the voters’ behavior generates the
underdog effect. Thus, we suggest that part of what is usually attributed to the bandwagon
effect could actually be an illusion due to misreporting, and not an inconsistency between the

classical model and the data.

An unrealistic prediction of rational voting models with fixed and homogenous voting costs
is the neutrality result, namely, that both candidates should have equal chances of winning
the election in equilibrium, regardless of the expected number of supporters of each candidate.
Taylor and Yildirim (2010b) shows that, in small elections, if voting costs are not fixed, but
rather independently drawn from a common distribution among citizens, the neutrality result
disappears in favor of the candidate with the support of the majority group. However, for large
elections (with the number of citizens tending to infinity), they show that a necessary condition
for the nonoccurrence of the neutrality result is heterogeneity of the voting cost distributions
between the types of constituents. In our model, with fixed (and equal) voting costs, the
neutrality result disappears even in large elections, that is, the candidate supported by the

majority group wins the election with probability greater than 50%.

After presenting the model in section 2, in section 3 we will characterize the equilibria of
the electoral game played by the citizens given the information released by the pollster. Our
characterization of electoral equilibria is slightly more general than that previously found in
the literature, in that it includes also noninterior type-symmetric equilibria (basically, those
in which the supporters of a particular candidate decide on a 0%, or a 100%, probability of
casting their votes). Notwithstanding the possible switch between one and another equilibrium
type, not only their continuity but also their smoothness is proved, thus allowing us to tackle
the relevant comparative statics problems. Since the analysis in the subsequent sections hinges

upon the result of the election, the distribution of the difference in the number of votes cast for

"Borgers (2004), Goeree and GroBer (2007), Krasa and Polborn (2008) and Taylor and Yildirim (2010a and
2010b), for instance, all implicitly assume risk neutrality.



both candidates is also provided (we refer to it as the multinomial difference distribution).

Section 4 presents the utility function of the pollster and characterizes the solution of its
optimization problem. Bounds for this solution are also offered, as well as comparative statics.
An asymptotic result on the pollster’s behavior, alongside the limiting distribution of the differ-
ence in the number of votes (a Skellam, or Poisson difference, distribution), are also provided,

since they will be key in the welfare analysis of section 5.

In section 5, the welfare comparison between misreported and truthfully reported poll results
is done. Our approach differs from other welfare analyses present in the literature, in the sense
that it considers an approximate welfare function (as the one in Taylor and Yildirim, 2010a)
not to suggest a result about the exact welfare function, but to actually prove such a result
(with the aid of several other results from the theory of discrete probability distributions). We
show that, contrary to common belief, misreporting actually increases the expected welfare
of citizens, relative to a truthful report. This holds even if the electorate size grows without

bound. Section 6 concludes.

2 Model environment

The main elements of the model are described below.

There are n > 2 constituents (to be referred to simply as citizens), two candidates (the Blue
party candidate B and the Red party candidate R) and an electoral pollster. The voting cost
¢ € R, is homogenous among citizens. A citizen gains 1 unit of utility if his/her most preferred
candidate wins the election, and loses 1 unit of utility if the other candidate is the winner. An

election tie is broken by the toss of a fair coin. Voting is voluntary.

The probability that a citizen favors candidate B (or R) is ¢ (1 — q). We assume that

q € [g,1—q|, where ¢ € (0,0.5).% Only the electoral pollster knows the true probability g.

The pollster declares to the citizens that the probability that a citizen favors candidate B is p.

8O0ne can take ¢ arbitrarily close to 0.



Since citizens do not know ¢, they will use p as an estimate for this parameter in their voting

decisions. We say the pollster is misreporting if p # q.

The citizens are instrumental voters. A citizen will vote if II X benefit > ¢ and will not vote
if IT x benefit < ¢, where II is the probability of being pivotal in the election and "benefit"

represents the benefit associated with being pivotal.

A voter is pivotal if and only if his/her vote creates or breaks a tie. In both situations, the

expected increase in utility for voting is 1, therefore benefit = 1.

Given the probability p reported by the pollster, the citizens play among themselves a
Bayesian Game. We focus on type-symmetric Bayesian Nash equilibria, in which the strategies
played by the citizens are homogenous within types (B-citizens or R-citizens) but might differ

between these types.

From the point of view of a B-citizen, given that all of the other B-citizens are voting with
probability v and all R-citizens are voting with probability ¢, the probability that his/her vote
is pivotal is:

=]

e (n7p7,% 5> B k=0 <k7 kys—_ll— 21{3) (p’)/)k ((1 B p) 6)k (1 P <1 - p> 5)71—1—2k (1)

2] )
" g (k’ k+ 17?” _1 2 — 2k:> (p,}/)k ((1—-p) 5)k+1 (1—py—(1-p) 6)n—2—2k 7

where the first summation refers to the probability of breaking a tie and the second summation
refers to the probability of creating a tie. An analogous expression holds for an R-citizen:
=2,
Il §) = 1—p) o) (pY)" (1 — (1 —p)d—py)" (2
w0 = 3 (o 1T ) (@ -p 0t ) A= )T

%]
" ; (k k+ 1717;_1 2 %) (@=p) &) ()™ Q=1 =p)d—py)" >,

9 An implicit assumption is that citizens are risk neutral. Grillo (2017) allows for risk-averse citizens.



An important feature of the model is that the pollster is not ideological: by assumption,
its goal is only to "get the election right." That is, the electoral result must, in some sense,
be coherent, given the announced probability p. Bear in mind that this is not trivial because
the voters’ equilibrium is a function of p. Since the pollster’s objective function will be known
only to itself (it does not play any sort of information game with the voters in our setup), its

presentation and discussion will be postponed until section 4.

In summary, the timing of the model is as follows:

Nature chooses the type of each citizen;

The pollster discovers the probability ¢ (probability that a given citizen favors candidate
B);

The pollster reports p € (0,1);

Each citizen takes p as given and chooses to vote or to abstain;

The election happens;

Each citizen and the pollster receive their payoffs.

3 Electoral equilibrium

This section has two main goals. The first one is to characterize the Bayesian-Nash equilibrium
of the voting game given the pre-election poll report p, which is done in Proposition 1, and

present the corresponding comparative statics results, done in Proposition 2.

The second one is to show (Lemma 3) that, at least for a sufficiently large population size,
the only relevant equilibrium type will be the interior one. Lemma 3 is a key result in this
study since it serves as a starting point for the derivation of our main results in the next two

sections (Propositions 4 and 7), as well as their asymptotic counterparts later on.



In order to characterize the electoral equilibrium, it will prove useful to define

1_IB (n7p7 ]-a ]-) if pE [057 1)
HR (nap7 17 1) if pE (0705)

and
T (n,p,ﬂ,1) if pel0.5,1)
n(p) = g : (4)
T, (n,p, 1, 1%,) if pe(0,05)
In appendix A, it is shown that, unless p = 0.5 (in which case ¢, (p) = ¢, (p)), we have

¢, (p) <@, (p). Other properties of these two functions are also shown, such as their symmetry

relationship: ¢, (p) = ¢, (1 —p) and ¢, (p) =, (1 —p) for all p € (0,1).1

The complete characterization of the electoral equilibrium is given in the following proposi-

tion.

Proposition 1 Givenn > 2, c € R, and p € (0, 1), there is one and only one type-symmetric
electoral equilibrium (v,0). If ¢ < ¢, (p), then (v,6) = (1,1). If ¢ > 1, then (v,9) = (0,0).
If ¢ € (@ (p),1), then (v,6) € (0,1)*, 6 = (p/(1—p))y and v € (0,min(1,(1—p)/p))
solves g (n,p,7,(p/ (L =p))y) = ¢. Forp > 0.5, if ¢ € (¢, (p),¢,(p)], then 6 = 1 and
v € [(1=p)/p,1) solves I (n,p,v,1) = ¢ (v = (1 —p)/p if and only if ¢ = ¢, (p)). For
p < 0.5, ifc € (¢, (p),Cy(p)], then vy =1 and 6 € [p/ (1 —p),1) solves Ilg (n,p,1,0) = ¢
(0 =p/ (1 —p) if and only if c =72, (p)).

Given this proposition, we can define functions 7 and v, that map the vector of parameters
(n, ¢, p) into its corresponding type-symmetric electoral equilibrium. Figure 1 shows the location

of all such equilibria for any fixed n > 2, p € {0.3,0.5,0.7} and for all ¢ € R,.

10The proofs of all lemmas and propositions of this section can be found in Appendix A.
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The solid line in Figure 1 is the locus of all points of the form (5 (n,¢,0.7),v5 (n, ¢, 0.7)).
As seen in Proposition 1, its slope is p/ (1 — p) ~ 2.33 for all ¢ between ¢, (0.7) and 1, and
it becomes horizontal at (vz,vz) = ((1 —p)/p,1) ~ (0.43,1). Similarly, the slope of the
dashed line is approximately 0.43 for all ¢ between ¢, (0.3) (= ¢, (0.7)) and 1, and it be-
comes vertical at (vg,7g) = (1,p/ (1 —p)) =~ (1,0.43). By the symmetry of the model,
Y (n,c,p) = v (n,c,1 —p) (see appendix A), so that the dashed line is just the reflection

of the solid line across the 45° line, which, in turn, is the locus of all points of the form
(’YB (na C, 05) » YR (TL, ¢, 05))

A basic yet crucial property of interior electoral equilibria is the well-known (see, e.g.,
Goeree and Grofler, 2007, and Taylor and Yildirim, 2010a) neutrality result of the pivotal
voting model, according to which the expected turnout for each candidate (npyg (n,c,p) and
n(1—p)vg(n,cp)) should be equal. This property is stated in the next lemma. In it, we

make use of a notation that will be used throughout the paper: v* (n,c) := v5 (n, ¢, 0.5).

Lemma 1 Given n > 2, p € (0,1) and ¢ € (¢,(p),1), we have v*(n,c) € (0,1) and

10



(/YB (na Cap) y YR (’I’L7 Cvp)) = (7* (n7 C) / (2]9) 7’7* (n7 C) / (2 (1 - p)))

We know from Proposition 1 that, if ¢ € (¢, (p),1), then (v (n,¢,p),vg (n,¢,p)) is an
interior (i.e., (g (1n,¢,p), 75 (n,¢,p)) € (0,1)?) type-symmetric electoral equilibrium. The fact
that, in this case, v (n,¢,p) = (p/ (1 — p)) v5 (n, ¢, p), as follows from Lemma 1, is the standard
neutrality result of the pivotal voting model. The fact that we can write v5 and v5 as simple
functions of the pollster’s choice variable p will be used extensively in the following sections,

since it brings analytical tractability to the pollster’s problem.

As mentioned in the introductory section, this neutrality result is at odds with electoral
data. In the next section we will argue that the apparent discrepancy between theory and data
can be better understood if one recognizes that the pollster may have incentives to misreport,

that is, honesty is not assumed from the outset.

The comparative statics of the type-symmetric electoral equilibrium with respect to para-
meters ¢ and p are described in the following proposition. Although not strictly necessary for
the remainder of our analysis (see Lemma 3), for completeness’ sake, results for the noninterior

equilibrium case are also provided.

Proposition 2 Given n > 2, the functions v5 (n,-,-) and v (n,-,-) are continuous. Further-

more,

i. v and vy are decreasing in c.'' Moreover,

(a) if p € [0.5,1), then Ovg (n,c,p) /Oc < 0 if c € (¢, (p),1) and Oyg (n,c,p) /Oc < 0 if
ce (¢ (p),1);
(b) if p € (0,0.5), then Ovg (n,c,p) /0c < 0 if c € (¢, (p),1) and vy (n,c,p) /Oc < 0 if

c€(c,(p),1).

1. Y 18 decreasing and 7y 18 increasing in p. Moreover,

"UThroughout the paper, we favor the "in(de)creasing"/"strictly in(de)creasing" nomenclature over the
"monotonic nonde(in)creasing" /"in(de)creasing" one.

11



(a) if p € [0.5,1), then Oyg (n,c,p) /Op <0 ifc € (¢, (p),1) and vy (n,c,p) /Op > 0 if

c€ (¢ (p),1);

(b) if p € (0,0.5), then Oyg (n,c,p) /Op <0 ifc € (¢, (p),1) and Oyg (n,c,p) /Op > 0 if

c€(c,(p),1).

The intuition is as follows. Firstly, as voting becomes more costly, the net benefit of voting
decreases and thus we should expect a smaller turnout. Secondly, the probability according to
which a citizen votes is decreasing in the perceived proportion of citizens of their same type,
for if a citizen believes that there are many others who support his or her preferred candidate,

then he/she has a larger incentive to free ride, thus avoiding the cost c.

Figure 2 illustrates the first part of this proposition. The graph of vz (10, -,0.7) meets the
upper horizontal line at ¢, (p) ~ 0.07, while the graph of v (10,-,0.7), at ¢, (p) ~ 0.32. Figure

3 illustrates the second part of this proposition.

1
087
7,(10,¢,0.7)
06 [
75(10,¢,0.7)
04
027
O 1
0 0.2 0.4 0.6 0.8 1
c
Figure 2
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74(10,05,p)

p

Figure 3

Figure 3 showcases five properties of type-symmetric electoral equilibria stated in the propo-
sitions above (and proved in appendix A). First, that v (n,c,p) =v5 (n,¢,1 —p),Vp € (0,1),
which is due to the symmetry of the electoral game: (7, d) is a type-symmetric equilibrium of
the electoral game with parameter values n, ¢ and p if and only if (§,7) is a type-symmetric
equilibrium of the electoral game with parameters values n, ¢ and 1 — p. Second, 75 (n,c,-)
is decreasing and ~yp (n, ¢, -) is increasing, as stated in Proposition 2. Third, restricted to all
domain points p such that (yg (n, ¢, p), v (n,¢,p)) € (0,1)%, the graph of 5 (n, ¢, -) is an equi-
lateral hyperbola. In fact, Proposition 1 implies that the equilibrium is interior if, and only if,
¢ € (¢, (p),1) — in which case Lemma 1 gives pyg (n, ¢, p) = 0.57* (n, ¢), constant in p. Fourth,
for low enough values of p, B-citizens feel so outnumbered that they all decide to go cast their
votes (by Proposition 1, this happens precisely for those p € (0,0.5) such that ¢ < ¢, (p)).
Finally, although for high enough values of p (in more precise terms, for those p € (0.5,1)
such that ¢ < ¢, (p), which in this figure corresponds to p =~ 0.88) the graph of 75 (n,c,-) is

no longer a hyperbola, there is no break there, neither in terms of continuity nor in terms of

13



differentiability, as shown in the proof of Proposition 2.

Out of these five properties, only the last one is new in the literature. It is the one that
allows for the above statement of Proposition 2. The following lemma collects a few more
basic results of the pivotal voting model. The convergence of vz (n,¢,p) and v (n,¢,p) to 0
comes originally from Palfrey and Rosenthal (1985), while the convergence of nvyy (n, ¢, p) and

nyg (n,c,p) comes from Taylor and Yildirim (2010a).

Lemma 2 Given p € (0,1), ¢, (p) is strictly decreasing in n and lim, ¢, (p) = 0.
Moreover, lim, .o vg(n,c,p) = lim, vz (n,¢,p) = 0, lim, .nyg(n,c,p) > 0 and

lim,, .o YR (0, ¢, p) > 0.

It may be noted that Lemma 2 implies that, given p and ¢ € (0, 1), there exists a critical
population size ng (¢, p) such that, if n > ng (¢, p), then ¢, (p) < ¢ and the electoral equilibrium
will be interior, as proved in Proposition 1. The following lemma will be essential for the analysis
in the remainder of this work, in that it guarantees the existence of a critical population size

that does not depend on p, a choice variable of the electoral pollster.'?

Lemma 3 Given c € (0, 1), there exists ng (¢c) € N such that, for all n > ng(c),

c> En <p> and (IYB (n7 Cvp) 'y TR (na CaP)) € (07 1)2 7vp S [Cj7 1-— (ﬂ .

As an illustration of this lemma, given § = 0.05, for ¢ = 0.3, ¢ = 0.5 and ¢ = 0.7, it would
suffice to take n > 69, n > 23 and n > 10, respectively, in order to ensure the interiority of
the electoral equilibrium for any p € [¢,1 — ¢]. Regarding the existence of two conclusions in
Lemma 3, the interiority conclusion (v5 (n, ¢, p),vr (1, ¢,p)) € (0,1) follows immediately from

¢, (p) < ¢ < 1 and Proposition 1.

12This is where the assumption ¢ € [g,1 — ¢] comes into play. With this assumption in hand, the pollster’s
choice of p is naturally constrained to the [7,1 — ] interval as well. If we had let ¢ € (0,1), there would not
exist a uniform critical population size capable of guaranteeing that, regardless of the p € (0,1) chosen by the
pollster, the electoral equilibrium would be interior.

14



All the above results hold regardless of the announced probability p of any given citizen
being a B supporter being equal to the true probability ¢ or not. In the next two sections, p
will be endogenized, and the two previous lemmas will be used both in the analysis and the
intuition regarding this endogenization. There, we will also see that it makes sense, both in
analyzing the pollster’s behavior and its welfare implications, to consider the distribution of the
difference in the number of votes cast for the two candidates. Since such analysis is nonstandard

in this literature, it is presented below.

The election result is a random vector (b,r,a), where b, r and a denote the number of
votes for B, the number of votes for R and the number of abstentions, respectively. The true

probability distribution (known only to the pollster) of (b, 7, a) is
Multinomial (n, v (n, ¢, p) , (1 = q) Vg (n,¢,p) . 1 = qvp (n,c,p) — (1 — @) v (n,c,p)) . (5)

To simplify the notation momentarily, write the distribution of (b,r,a) in (5) as
Multinomial (n, 8, p,1 — 8 — p). Let us call the distribution of b — r the multinomial differ-
ence distribution, MultiDiff (n, 3, p). Its characteristic function ©\ppifr(n,s,) can be obtained

as follows.

First, note that b—r =difand only if d+n=b+(n—r) =b+ (b+ a) = 2b+ a. Now, on

the one hand, we have, for any ¢t € R,
Prtaipii(ngp) (£) = E (eitd) _ g (eit(d-i-n—n)) _ing (eit(d+n)) _ ing (ei(th—i-ta)) .

On the other hand, E (e/®**)) could be thought of as

@Multinomial(n,ﬂ,p,lfﬁfp) (2t7 07 t) ’
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which equals (Be + pe® + (1 — 8 — p) €*)".!3 Therefore,
OMultiDiE(n,8,p) () = e (ﬁem +pe + (1 - 5—p) eit)n = (1 + (@it — 1) +p (@_it - 1))n
(6)
Once we have studied the determination of p by the electoral pollster, the characteristic
function given in (6), in conjunction with the two previous lemmas, will also allow us to find
(through Levy’s Continuity Theorem) the asymptotic distribution of the difference of votes.
This will be key in establishing our welfare results, which will hold not only in the limit, but

also for any sufficiently large n.

4 Electoral pollster’s behavior

The main concern of the pollster is to be considered of good quality, by "getting the election
right." The election result, a realization of the random vector (b,r,a), is known to all citizens
right after the election. Although (b, 7, a) is distributed according to (5), the citizens, based on

the information reported by the pollster, p, believe that it is distributed as
Multinomial (n, pyg (n,¢,p), (1 = p) Y5 (n,¢,p) , 1 = pyp (n,¢,p) — (L —p) vg (n,c.p)).

In particular, the citizens believe that, on average, candidate B will receive npyg (n,c, p)
votes and candidate R will receive n (1 —p) vy (n,c,p) votes. By Lemmas 3 and 1, these

expected turnouts, in the eyes of citizens, are equal, as long as n > ng (¢).

The pollster’s rating depends on how the actual election result compares to the result implied
by the report. We assume that, given an election result (b,r,a), the pollster’s rating is given
by

—[(b=npyp (n,c,p))* + (r —n (1 —p)vg (n.c.p)’] .

13The characteristic function of the Multinomial distribution can be checked in Johnson et al. (1997, p. 37).
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which is a measure of how far the election result was from the result expected by the citizens.*

Defining ep (b, n, ¢, p) := b—npyp (n,c,p) and eg (r,n,¢,p) := r—n (1 —p)yg (n,c,p) as the
pollster’s prediction error, from the perspective of the citizens, regarding B-votes and R-votes,

respectively, the rating is

— [(es (b,n, ¢, )’ + (er (r,n, c,p))z} .

As the actual election result is random, the utility function of the pollster is the expected value

of its rating. That is,

U(n,e,p.q) = —E [(es (b,n,¢,p))* + (er (r,n,¢,p))’] (7)

where E is being taken with respect to the true probability distribution (5), which depends on

q. The pollster’s optimization problem is:

jcnax U (n,c,p.q). (8)

We denote a solution to this problem by p? (¢,q). Because it is commonly known that

q € [g,1 — q] (you may think that a society with a degree of ideological homogeneity so high
that ¢ < g or ¢ > 1 — g would hardly find it necessary to have elections), all citizens would
know for sure that the pollster was not being truthful if it released ¢ < g or ¢ > 1 — ¢g. That is
why the constraint in (8) is set as p € [¢, 1 — ¢|, and that (together with continuity of U in p)

is why we are assured of the existence of a solution to that problem.

14The website FiveThirtyEight.com, for instance, ranks electoral pollsters in a similar way. The difference is
that usually pollsters report a direct prediction of the election result (e.g., "candidate B will win by 10 points"),
whereas here the pollster reports the probability that someone favors candidate B.
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Remark 1 It may be noted that our utility function resembles, in absolute value,

E[(b—npyg (n.c,p)’]  E[(r—n(1-p)yg(n,cp)’]
npyg (n, ¢, p) n(1—p)yg(n,cp)
LB [(n—b—71)=n(l—pyg(n,c,p) — (1 —p) vz (n,c,p)))°]
n(1—pyg(n,cp)—(1-p)yg(ncp))

)

which is the expected value of the statistic of the Pearson Chi-Squared Test of goodness of fit
for a multinomial distribution, with a null hypothesis that the true probability distribution of

(b,7,a) has parameters (pyg (n,c,p), (1 —p) Vg (n,¢,p), 1 = pyg (n,c,p) — (1 —p)vg (n, ¢, p)),
that is, that the pollster is being truthful.

In fact, by Proposition 1, in an interior equilibrium, the second denominator in this formula
equals the first one, so that, by Lemma 2, they both converge, as n — oo, to the same positive
number, whereas the third denominator, equal to n — 2npyg (n,c,p), diverges. Therefore, it is
only logical for a zero weight to be used for the third term in Pearson’s formula, and the same
positive weights to be given to the first two terms, as in U. Thus, for analytical tractability
and without loss of insight, we assume that the reputational concerns of the pollster can be

reasonably represented by U.

Also, even with a truthful report (p = q), in an interior equilibrium, the expected value of
the above test statistic can be seen to equal 2, which corresponds to a larger than 10% p-value.*
Therefore, the null hypothesis would not be rejected for any significance level up to 10%. In
other words, our model is not forcing, in any way, misreporting by the pollster, since the latter
already achieves a good result by releasing a truthful report — although, as will be shown in
Proposition 4, it can do even better by misreporting. In this way, although our model concerns
a single election, it could also be used to emulate a dynamic environment with multiple elections

and a stable presence in the market of the polling firm, with no reason for a lack of trust on the

Ay | o]

In an interior equilibrium, by Lemma 1, the expression becomes — + —
* *\ 2 * * 0\ 2 * * 2 2 2
Bl(k—n(1—7)?] _ Var@+(F-23)"  Vai)+(2F-2)  Va®+(n(1-%-2)-n0-7)"  var(i) | Var(j)
T T = - =7 - A=) e TP
v _ (%) (o) | nyraea) ¥ 2 e R
taao = n3T + rE + S0 =1-% +1- %5 +9" =2, where v* =" (n, ¢).

2
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part of the citizens.

To better grasp the pollster’s incentives, we can rewrite this function as

U(n,c,p,q) = —[E(eh(bn,c,p))+E/(ek(r,n,cp))]

_ [E (eB (ba n, Cvp))} + Var (eB (bv n,c, p)) ’ (9)

+[E (er (r,n,c,p)))* + Var (e (r,n, ¢, p))

where expected values and variances are computed using the real distribution (5). Thus, the
pollster faces a tradeoff between minimizing the expected value and the variance of its prediction

CITrors.

On the one hand, since

E (e (b,n,c,p)) = E(b—npyg(n,cp)) =ngyg(n,cp)—npyg(n,cp)

= n(qg—p)vp(n,cp) (10)

and

E(er(r,n,c,p)) = E(r—n(l—-p)yg(n.cp)=n1—-q)vg(n.cp)—n(l—p)vg(ncp)

= n(p—q)vr(ncp), (11)

in order to minimize

[E(ep (b,n,c.p))]” + [E(er (r,n,c,p))* = n* (0 — 0)° (V5 (n.c,p) + 7% (noep)) . (12)

the pollster should release a truthful report (p = ¢).
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On the other hand, we have

Var (eg (b,n,c,p)) = Var(b—npyg(n,c,p)) = Var (b)

= nlgyp(n,¢p) (1 = qyp (n,¢,p)) (13)

and

Var (eg (r,n,¢,p)) = Var(r—n(l—p)yg(n,c,p)) = Var(r)

= n((L=q)vr(n,cp) (1 =1 =g vr(ncp)). (14)

If c € (0,1) and n > ng(c), by Lemma 3, the electoral equilibrium will be interior, so that

Lemma 1 applies and we obtain

Var (ep (b,n, c,p)) + Var (eg (r,n,¢,p)) = Var (b) + Var (1)
= n(qyvp(n,c,p) (L= qyp(n,¢,p)) + (1 = q)vg (n,¢,p) (1 = (1 = q) vz (n, ¢, p)))
C (1 (e L lmar (o l=a)Y (15)
p 2 p 2 1—p2 1—p2
where v* is short for v* (n, ¢). This is not minimized by taking p = ¢. In fact, the derivative of

this expression with respect to p is

ny* 2¢-Dp' =2y +22-7)g+y" -1’
—3 )
2p* (1 —p) 3¢ (vg+ 1) p? — g (37 g+ 1) p+ ¢

which, at p = ¢, equals ny* (1 —~*) (2¢ — 1) / (2¢ (1 — q)), which is only 0 if ¢ = 0.5 (in which

case the pollster will indeed choose not to misreport, as shown in Proposition 4 ahead).

Given this tradeoff, in order to avoid putting its reputation at risk, the pollster is typically
willing to accept nonzero expected errors, as long as their variance is sufficiently small. For
instance, if ¢ > 0.5, since this expression for the partial derivative of Var (eg (b,n,c,p)) +

Var (eg (r,n, ¢, p)) with respect to p at p = g becomes positive, reporting p < ¢ may be beneficial
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to the pollster — even in the absence of any partisan interest whatsoever. That this is in fact

the case will be proven in Proposition 4, the central result of this section.

An alternative but related way of understanding this sum of variances is to note, from the

covariance formula of a multinomial distribution, that

Cox (0 = =y (e (11~ )3 o) = -0 () 4172

so that (15) gives

Var (b—r) = Var(b)+ Var(r) —2Cov (b, 1)
ny* [ q qv” I—gq IL—qgv* ny ql—q ,
= 21— S O [N S Y
2 (p( p2)+1—p( 1—p2)>+ 2191—197

Lemma 2 allows us to define m (¢) := lim, . ny* (n,¢) (= lim, o nyg (n,¢,0.5)) and thus

yields that, for a large n and fixed p, Var (b — r) should approach

0 (1,120 o

2 p 1-p

just as Var (b) + Var (r) does (from (15)). Expression (16) can also be interpreted as the
asymptotic expected turnout of the election,

_ _ny*(ne) (q  1—gq
lim (ngyp (n, ¢;p) +n(1 = q) g (n,c,p)) = lim —é : (]; T _p) :

In this sense, for large n, in order to minimize Var (b) + Var (1), the pollster may want to choose
-1

a p close to the one that minimizes (16) instead — that is, p = ¢ (q) := (1 ++/1/q— 1) 16

In fact, we will establish, as a step in showing the comparative statics results in Proposition 5,

that the p reported by the pollster will necessarily lie between ¢ and ¢ (q) (see Lemma 4).

This makes sense since, although the only way of matching the B- and the R-turnouts on av-

16This also happens to be the value that the pollster would choose if it wished its report to reflect the
expected turnout for B over the expected turnout for R in the election (that is, so that p/(1—p) =

(¢vg (n,¢,p)) / (1 =q@)vg (n,¢,p) = (¢/p) / (1 —q) / (1 = p))).
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erage (in an interior equilibrium setting, ngyg (n,c,p) =n(q/p)v*/2 and n (1 — q) vg (n,c,p) =
n((1—¢q)/(1—p))~*/2) is by reporting p = ¢, the pollster’s rating is based not on averages
of elections, but on this particular election. In this way, it is willing to report a p that does
not imply an expected election tie, as long as the difference between the number of votes cast
for B and R is still small and has less dispersion. The simplest way to achieve this effect is by

making less people show up on election day.

The reader may want to note that our assumption on the pollster’s behavior in no way forces
it to misreport its poll results. In fact, if the model environment was such that voting was not
considered to be costly, then it would never be in the pollster’s best interest to misreport, as
shows the following proposition (the proof of which can be found in appendix B, alongside the

proofs of all the remaining results of the paper).

Proposition 3 Givenn > 2 andq € [q,1 — G|, if c =0, then p, (¢,q) = q is the unique solution

to the pollster’s problem.

Thus, it is most natural to analyze the issue of misreporting of pre-election poll results within
a costly voting framework, in which the pollster’s choice of p affects turnouts, as presented in

Proposition 2 (and, as a consequence, the probability that either party will win the election).

We are now ready to state and prove the main result of this section, which confirms the
misreporting behavior suggested in the discussion above. According to it, misreporting is the

norm, rather than the exception.

Proposition 4 Given q € [g,1—q|, ¢ € (0,1) and n > ng(c), the solution of the pollster’s
optimization problem, p? (c,q), is unique and such that,

i. if ¢ = 0.5, then pf (c,q) = ¢;

i. if ¢ > 0.5, then pf (c,q) € (0.5,q);

iii. if ¢ < 0.5, then p* (c,q) € (q,0.5).

22



Thus, if there exists an expected majority in the society (¢ # 0.5) and n is sufficiently
large so that the electoral equilibrium is interior, then a rational pollster driven purely by
reputational motives will always misreport information. Moreover, it will do so in such a way
that the citizens will believe that the majority is not as large as it actually is. As we will see
in the next section, contrary to common belief, misreporting is not only in the best interest of

the pollster, but also of society.
This proposition also establishes that, fixed n > 2, ¢ € (0,1) and n > ng(c), pf (c,-) :
(7,1 —q] — [q,1 — q] is a well-defined, single-valued, function. It is plotted below for n = 100

and ¢ € {0.3,0.5,0.7}, together with the 45° line (which corresponds to p* when ¢ = 0, by

Proposition 3).

1 -
08
06 [
04r
p*(100,0,q)
i p*(100,0.3,q)
0.2 p*(100,0.5,q)
——— p*(100,0.7,q)
—¢(q)
O 1 1 1 1 ]
0 0.2 0.4 0.6 0.8 1
q
Figure 4

Also present in Figure 4 is the aforementioned bound ¢ (¢), which lies between 0.5 and q.

This hints to the following strengthening of Proposition 4.

Lemma 4 Given c € (0,1) and n > ng (c), if ¢ € (0.5,1 — g, then p} (¢, q) € (¢(q),q), and if

0 € [5.05), then p; (c4) € (4.6 (@), where 9 (q) = (14 /g —1) .
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This more precise bound helps in the addressing of the comparative statics issues regarding

*

Py

Proposition 5 Given q € (§,1 — ), c € (0,1) and n > ng (c), the function p}, is continuously
differentiable. Furthermore,

i. dp;, (c,q) /0q > 0;

ii. Opk (c, q)/@c 0 zfq> 0.5.

Part (i) should not come as a surprise, since both channels that go into the pollster’s decision
process seem to point in the same direction: if ¢ is nudged from 0.6 to 0.7 for instance, then
the value of p that minimizes [E (es (b, n, ¢, p))]* + [E (e (7,1, ¢,p))]* also moves from 0.6 to

0.7, while the value of p that minimizes Var (ep (b,n,c,p)) + Var (eg (r,n,c,p)), at least for a
-1
large n, should also move upward, from something around ¢ (0.6) = <1 ++/1/0.6 — 1)

something around ¢ (0.7) (1 +4/1/0.7 — )

As for part (ii), note, by Lemmas 3 and 1, that [E (eg (b,n,¢,p))]* + [E (er (r,n, ¢, p))]

(43) =0 (o 7 57)

(see (12)). Thus, at least for large n, maximizing U with respect to p entails minimizing

(32) om0 G i) =752 (0 i=3)

(see (16)) or, equivalently,

2 (b))

The first of these summands pushes p to ¢, while the second one brings p to ¢ (q), which is

2

converges to

lower than q if we use the ¢ > 0.5 case to fix ideas. The weights attributed to these two forces
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are m(c) /2 and 1. If ¢ is nudged upward, then m (¢) should fall, by Proposition 2 (recall
that m (¢) = lim,, o nyg (n,¢,0.5) and vz (n,¢,0.5) decreases with ¢). Thus, the first of these
channels loses importance vis-a-vis the second one, which results in a lower, closer to ¢ (q),

value of p.
A few comments about the implications of our model should be made.

Firstly, given the possibility of misreporting, the election will not be a tie in expected terms,
as formalized in the lemma below. Rather, if ¢ > 0.5, then the expected result of the election
is a win for candidate B, as could be anticipated by the fact that the expected number of
votes for B (= ngyg (n,c,p) = ngy*/ (2p)) is greater than the expected number of votes for R
(=n(1—q)vg(n,e,p) =n(l—q)v*/(2(1 —p))). Thus, our model suggests a mechanism to
explain why, given ¢ # 0.5, the minority candidate is not expected to win every other election,
as would be implied by the canonical pivotal voting model with fixed and equal voting costs

and truthful pre-election poll reports.'”

Lemma 5 Given ¢ € (0,1), n > ng(c) and q € [q,1 —q|, then Pr(B wins | n,c,q,q) = 0.5,
and:*®
i. if ¢ = 0.5, then Pr(B wins | n,c,p; (¢,q),q) = 0.5;
it. if ¢ > 0.5, then Pr (B wins | n,c,p} (¢,q),q) > 0.5;
iii. if ¢ < 0.5, then Pr (B wins | n,c,p (c,q),q) < 0.5.
Secondly, we provide a new interpretation for the emergence of the so-called "bandwagon
effect" — the phenomenon according to which supporters of a specific candidate are more likely

to cast their votes if their candidate ranks first in pre-election polls. Our model implies that

part of this effect could actually be an illusion. In an interior equilibrium, citizens expect that,

7 Alternatively, Taylor and Yildirim (2010b) show that, for a finite population size, the neutrality result may
also break in favor of the majority, as long as voting costs are drawn from a common nondegenerate distribution.
18There is a slight abuse of notation here, since n, ¢, p and ¢ are actually parameters, not events.
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on average, the election will be a tie, or, in another way, that the ratio of the expected number

of votes for each candidate should be

’I’Lp:; <C7 Q) B (TL, ¢, p; <C7 Q))

=1,
n (1 - p)TkL (Ca q)) Tr (na C7p;k1 (C7 Q))
by Proposition 1. However, in actuality, this ratio would be
* * L
ngyp (n,c,py(cq) ngyg (n,¢,p;, (¢ q)) _ pilea)

n(l=q) g (nepp(e,0)  nits (L=p (@) 7R (noe 0} (6.0)  1oitgy

which is greater than 1, by Proposition 4.

For example, if ¢ = 0.80, ¢ = 0.7 and n = 100, the pollster would report p* = 0.71, and the
above ratio would be approximately 1.62. Thus, candidate B will receive, on average, 62% more
votes than candidate R. An observer who believes that poll results are truthful, by observing
such a discrepancy in a given election, could erroneously be led into thinking that, instead of the
underdog effect predicted by Proposition 2, the bandwagon effect was in place. It could occur
to him/her that the electoral equilibrium (75, v5) as generated by the pivotal voting model was
incorrect — namely, that vz (vz) was larger (lower) than predicted —, without realizing that
the p and the 1 — p terms in the ratio of the expected number of votes were wrong in the first
place. In this way, our model implies that part of what is usually attributed to the bandwagon

effect can actually be a direct consequence of misreporting.

Having studied the pollster’s rational reporting behavior for a fixed (and sufficiently large)
population size, one could ask whether such behavior is qualitatively different as the population

size grows without bound. The following proposition shows that this is not the case.

Proposition 6 Given ¢ € (0,1) and q € [q,1 — ], lim,, .o p’ (¢, q) exists, and, if denoted by
i (¢,q), is such that:

i. if ¢ = 0.5, then p}, (¢,q) = ¢;

ii. if ¢ > 0.5, then p’_(c,q) € (0.5,9);
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iii. if ¢ < 0.5, then p%_ (c,q) € (q,0.5).

This result will prove important also in the welfare discussion in the next section, in that,
as anticipated in the brief discussion following the characteristic function of the multinomial
difference distribution in (6), it makes possible the derivation of the asymptotic distribution of

the difference in the number of votes cast for the two candidates, as stated in the lemma ahead.

Lemma 6 Given ¢ € (0,1) and q € [q,1—q|, the number of B-votes minus the

number of R-votes converges in distribution to a random wariable Z  distributed as

Skellam ((q/p, (¢, q)) m (c) /2, (1 = q) / (1 = p% (c;q))) m (c) /2)."

Given the possibility of misreporting (for ¢ # 0.5), p% (¢, q) exists and is not equal to
q, by Proposition 6. Lemma 6 says that even the asymptotic distribution of the difference
of votes will be skewed. In fact, if we use ¢ > 0.5 to fix ideas, it will be skewed in fa-

vor of candidate B, since, by Proposition 6, we will have (¢/p% (¢,q))m(c) /2 > m(c) /2 >

(1 =q) /(1 =p5 (c,q))m(c) /2.

5 Welfare analysis

Now that we have characterized the electoral equilibrium and the solution to the pollster’s

problem, we are able to analyze the welfare implications of misreporting.

Let 7 (n, ¢, p,q) correspond to the expected (in the eyes of an outside observer, who knows
not only p but also q) aggregate ideological component of utility within society (that is, citizens

favoring the winning candidate earn +1, all others earn —1).

In order to proceed with this computation, the random vector (b, r, a) is insufficient, since we
do not know how many of those a abstentions correspond to B supporters and how many cor-

respond to R supporters. If we denote by np the number of B-citizens, the expected aggregate

YGiven mp,mpr > 0, Skellam (mp, mg) is the distribution of X — Y, where X ~ Poisson (mp) and Y ~
Poisson (mp) are independent. It is also called the Poisson difference distribution.
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ideological component of utility within society, given n, ¢, p, ¢, is:*

Pr (B wins | nac7p7QanB) (TLB - (n - nB))
I(na G p, Q) = EnB
+Pr (R wins | n,¢,p,q,ng) ((n —ng) —np)

Pr (B wins | n,¢,p,q,ng) (2ng — n)
= En,

+ (1 = Pr(B wins | n,¢,p,q,ng)) (n — 2np)

= EnB [(2 Pr (B wins | n,c,p, Q7nB) - 1) (2713 - n)] :

An exact expression for this ideological component of utility would be rather difficult to
work with.2! However, a tremendous shortcut would be made possible if we were to disregard
the dependence between ng and the probability that candidate B wins the election. In that

case, we could use the following approximation for Z (n, ¢, p, q):

I(n.e.p,q) = (2Pr(B wins | m,c,p,q) —1)En, (20 — n)

= (2Pr(B wins | n,c,p,q) — 1) (2ng —n), (17)

where we have used that np is binomially distributed with parameters (n, ¢), so that E,, (ng) =
ng.

Let us argue that this is a reasonable approximation when n is large, in the sense that
lim,, .o ((Z (n,c,p,q) — I (n,c,p,q)) /n) = 0 (that is, the difference in the per capita ideo-
logical component of utility when measured through Z and [ is negligible). Call z,,,, =

Pr (B wins | n, ¢, p,q,ng) and y, := Pr (B wins | n, ¢, p, q), just to save a bit on notation. Note

20We are only interested in the utility of the citizens, that is, the utility function of the pollster does not enter

the welfare function.
2LTf abstentions a are decomposed as b+7, where b and 7 represent B and R supporters who choose not to vote,

then we could write Z (n,¢,p,q) = 3 4,550 (o5 (@75)" (1= a)7)" (@(1—75)" (1 —a) (1= 7R)"

b+r~£§+'F:n
n b r b 7
-2 b,r,b,7=0 (b,'r',B,'F) (evp) (1 —4q) “YR) (q(1=7p)) (1—-q)(1— ’YR)) .
b+r-|l;Z+F:n
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that

T (n,c,p,q) - Iepa) _ o (200 — 1) (Q%B 1) = (25— 1) (24— 1)]

n
= Bus |(27nng — 1) (272 = 20) + (20np — 29) (20 = )]
np

= 2En, [(2%@ -1 <_ - qﬂ ’

n

where we have used the Law of Iterated Expectations to get E,, [(2Znn; — 2yn) (2¢ — 1)] =
2 (2q - 1) ETLB ["En,TLB - yn] = 0.

Note that both 2z,,,, — 1 and ng/n — ¢ have absolute values bounded by 1, and that, by
the Strong Law of Large Numbers, ng/n — g %% 0. Therefore, the problem is reduced to one
of showing that, if X, and Y,, are random variables such that |X,|,|Y,| < 1,¥n € N, and
Y, %0, then lim,_. E (X,Y;) = 0. That this is true can be shown as follows: since E is an
increasing operator and — |Y,,| < X,,Y,, < |Y,,|,Vn € N, necessarily E (X, Y,) is always between
—E|Y,| and E |Y,|, so that the Squeeze Theorem would yield lim,, ., E (X,,Y,) = 0 if we were
to show that lim, .., E|Y,| = 0. And indeed, this is the case, as can be seen by noting that
1V, 310 =0, [Y,] <1, E1 =1 < oo, and applying the Dominated Convergence Theorem to

ensure that lim, . E|Y,|=E0=0.

The above approximation plays a major role in the proof of the main result of this section,
Proposition 7, in appendix B. Using the limiting distribution given in Lemma 6, we are able to
establish an asymptotic version of Lemma 5, so that, even as n — oo, one should expect that
the candidate supported by the majority of the citizens will win the election more often than

not.

Lemma 7 Given c € (0,1) and q € [g,1 — ¢,
i. if ¢ = 0.5, then lim,, ., Pr (B wins | n,c,p’ (c,q),q) = 0.5;
ii. if ¢ > 0.5, then lim,, .o, Pr (B wins | n,c,pt (c,q),q) > 0.5;

iii. if ¢ < 0.5, then lim,, o, Pr (B wins| n,c,pk (¢,q),q) < 0.5.
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Thus, the probability of a victory of the "right" candidate, namely the candidate who most
likely has the support of the majority of the population, is greater than 50%. By allowing the
possibility of misreporting, the neutrality prediction of the canonical pivotal voting model (that
election results, on average, should be ties) disappears in favor of the majority candidate, even
as n tends to infinity. This contrasts with the conclusions of Campbell (1999) and Taylor and
Yildirim (2010b), where, given a truthful report of poll results, departure from the neutrality
result in the limit can only occur if the voting cost (or, equivalently, the ideological component of
utility) of B supporters is different from that of R supporters.?? Once we relax the assumption
of truthful poll results, even in a model with fixed and homogenous voting costs, we avoid the
unrealistic prediction that both candidates have equal chances of winning the election. In fact,
we should expect the majority candidate to win more often than not — not only for a fixed

electorate size, but also as the electorate size grows without bound.

Back to our finite n environment, the expected cost C of the election is given by

C(n,c,p,q) =nqgyg(n,c,p)c+n(l—q)yg(n,cp)ec (18)

Thus, the welfare function WV is given by

W (n,c,p,q) =7 (n,c,p,q) —C(n,c,p,q).

This approach, akin to Goeree and Grofer (2007), differs from other welfare analyses present
in the literature, in the sense that it considers an approximate welfare function (I — C, as in
Taylor and Yildirim, 2010a) not as a means of suggesting a result about the exact welfare
function (Z — C), but to actually prove such a result (with the aid of properties of the Skellam

distribution).

22More precisely, Taylor and Yildirim (2010b) show that, as opposed to their finite population case, even
if voting costs are stochastic, if they are drawn from a common distribution, then, no matter how large the
majority of a candidate may be, asymptotically, we should expect an election tie. Both Campbell (1999)
and Taylor and Yildirim (2010b) show a converse result: if the voting costs for R-supporters are first-order
stochastically dominated by the voting costs for B-supporters, then, no matter how large the majority of B,
one should expect a victory of R.
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The next proposition shows that, for sufficiently large elections, misreporting of poll results
actually generates a welfare improvement. Properties of the Skellam distribution are key in

arriving at this central result of this work (see appendix B).

Proposition 7 Given c € (0,1) and q € [q,1 —q| \ {0.5}, for sufficiently large n,

i. C(n,c,p;(c,q),q) <C(n,cq,q);
iw. I (n,c,p;(c,q),q) >Z(n,cq,q);

ii. W (n,c,ps (¢,q),q) > W (n,¢,q,q).

The intuition behind this proposition is as follows. Suppose that ¢ > 0.5. In this case, it
would be best for society if candidate B was the winner of the election, as, more often than
not, the number of B-citizens will be larger than the number of R-citizens. Recall that, with a
truthful report (p = ¢), the expected result of the election is a tie, so that the probability that
candidate B wins is 1/2. However, due to the misreporting behavior explained in Proposition
4, pt (¢,q) € (0.5,q), and by Proposition 2, the B-citizens (R-citizens) are going to vote with
a higher (lower) probability relative to the truthful poll, so that the probability that B wins
is greater than 1/2. Besides that, in absolute value, the probability of a B-vote ends up
changing less than the probability of an R-vote, in such a way that the expected voting cost
decreases. Thus, as the expected benefit increases with misreporting and the expected voting
cost decreases, we conclude that a misreported poll is unambiguously welfare-improving relative

to a truthful poll.

Finally, with Lemma 7 at our disposal, we can also check the robustness of the conclusion
that the misreporting of polls is welfare-improving, by showing that it holds even as the size
of the electorate grows without bound. This is facilitated by our proof of Proposition 7 which,
given the asymptotic nature of the approximation of Z via I, naturally calls for the taking of

limits as n — oo (in opposition to the fixed n approach in Proposition 4 of Goeree and Grofler,

2007).
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Proposition 8 Given c € (0,1) and q € [g,1 —q] \ {0.5},

i. lim, 00 (C (n,c,p5 (¢,q) ,q) /n) =lim, .« (C (n,¢,q,q) /n) =0;
di. limy, o0 (Z (0, ¢, 05 (¢,q),q) /n) > limy, o0 (Z (n,¢,q,q) /0);

ZZZ hmnﬂoo (W (n7 Cap;kz (Cv q) ) q) /77,) > hmnﬂoo (W (na Cv Q> Q> /n>

Thus, the result that misreporting of pre-elections poll results enhances the welfare of society

relative to a truthful report is true not only for a finite population size, but also asymptotically.

6 Concluding remarks

In this paper, we formally introduced an electoral pollster in an two-candidate costly voting
model, and have concluded that a pollster driven only by reputational reasons will underreport
the expected number of supporters of the most preferred candidate. This implies that, relative
a truthful report, citizens in the expected majority group will vote with more intensity; the
contrary being true for citizens in the expected minority group. With misreporting, not only
the chances of a victory by the most preferred candidate in society are raised, but also total

election costs are reduced, thus yielding a welfare gain.

By acknowledging the possibility of nontruthful pre-election poll results, we show that,
even in a model with fixed and homogenous voting costs, the candidate who is supported
by most citizens wins the election with probability greater than 50%. This result also holds

asymptotically, that is, for an electorate size growing without bound.

Finally, our work suggests that part of what is usually attributed to the bandwagon effect
could actually be an illusion due to misreporting, in the sense that, even if the citizens’ behavior
generates the underdog effect instead, an observer who disregards the possibility of nontruthful

polls could incorrectly conclude that the bandwagon effect was taking place.
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A possible extension of this work would be to analyze the effects of different incentive
schemes regarding the release of poll results, especially when there is competition among dif-
ferent pollsters. Also of interest would be an analysis of the behavioral and welfare effects in
the case of multiple simultaneous state elections (for governors or legislative representatives),

with or without state-dependent ¢ variables.

The present analysis can also be linked to the issue of voluntary vs. compulsory voting,
studied in Borgers (2004) and Krasa and Polborn (2009). This could be achieved by letting a

social planner aware of the pollster’s misreporting behavior choose ¢ as to maximize welfare.

Finally, Campbell (1999) provides a model which favors the electability of the minority
group, due to an asymmetry in the ideological component of both groups’ payoffs. Whether the
pollster’s report bias under such circumstances, as well as the resulting welfare implications,

would be strengthened or weakened, is left for future research.
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Appendix A

This appendix proves only the basic results regarding the pivotal voting model as presented in sections
2 and 3 (that is, prior to our discussion of the pollster’s optimizing behavior). Unfortunately, it is not
always true that the more basic result has the shortest proof. In this way, let the reader interested
primarily in understanding the pollster’s misreporting behavior and its welfare implications — to be
tackled in appendix B —, be advised that the technical results stated in the present appendix as
"claims" will not be invoked in any of the proofs of appendix B. Only "lemmas" and "propositions"

herein will be called upon in that appendix.

In order to obtain the characterization of the electoral equilibrium, take the point of view of a
citizen that prefers candidate B, and suppose that this citizen votes with probability 4 € [0, 1], while
the other n — 1 citizens are voting with probabilities v (B-citizens) and § (R-citizens). Firstly, note
that, as this citizen votes with probability 7, the expected voting cost in which he/she incurs is given
by 4c. Moreover, note that the electoral result depends on the votes for candidates B and R that
come from the other n — 1 citizens. Denote by A the difference between the number of votes that

candidate B and R received from the other citizens. There are four relevant events:

i) A > 1, in which case the B candidate wins and the ideological component of our citizen’s utility

is equal to 1;

ii) A < —2, in which case the R candidate wins and the ideological component of our citizen’s

utility is equal to —1;

iii) A = 0, in which case, with probability ¥ our citizen will break the tie and thus the ideological
component of his/her utility will be 1. With probability 1 — 4, as the tie will be broken by the toss
of a fair coin, each candidate will be elected with probability 1/2, which implies that the expected
ideological component of his/her utility will be 0;

iv) A = —1, in which case, with probability 4 our citizen creates a tie, so that the ideological
component of his/her utility will be 0, and with probability 1 — 4 our candidate does not vote,
implying that candidate R wins the election and the ideological component of our citizen’s utility will
be —1.

If p € (0,1) is the believed probability that a citizen favors candidate B, then the multinomial
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probabilities associated to each of these four events are, in order:

S o=

Sy =

S3 : =

Sy 1 =

P (1=p)8) L—py— (1 —p)&)" "7,

Taking these probabilities into account, the expected utility of this citizen will be given by mul-

tiplying them, in turn, by 1, —1, 4 and — (1 — 7), adding them all up and then subtracting F¢. This

generates

VB (TL, ¢ D, ’3/7 Y 5)

= 51*5’2+’153*(1*’3/)S4*’70
= 51—52—S4+’~}/(—C+S3+S4)
= §1+§/(7C+HB (nvpvlyaé))a

where £; := 51 — S2 — Sy is constant in 7, and S5+ Sy is simply another way of writing the probability

that this B-citizen’s vote is pivotal in the election, i.e., Il (n, p,7,d).

Likewise, the expected utility of a citizen that prefers candidate R and votes with probability ¢ is

given by

VR (na ¢ D, 57’7’ 5) = 52 + S (_C + HR (n7p77’ 6)) .

By definition, (v, d) is a type-symmetric Nash equilibrium if and only if each B-citizen (R-citizen)

chooses to vote with probability v (d) given that all other B-citizens are voting with probability v and

all other R-citizens are voting with probability d —i.e., if and only if v € arg maxz¢jo,1) VB (n,c,p,7,7,0)

and 0 € argmaxscr 1) VR (n, ¢ D, 5,7,5).

Since & (%) does not enter the first (second) of these maxi-

mization problems, we can rewrite these conditions in a simpler way by defining ¥ <n, c, P, 7, ) Y5 5) =

Ve (n,e,p,%,7,0) + Vg (n, ¢,p, 0,7, 5) and stating that (v, 0) solves the following problem:

__max
(,0)€[0,1]

o v (n, D, Y, 5,7, 5) .
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Thus, (7,9) is a type-symmetric Nash equilibrium if and only if (v, d) belongs to the arg max of the

problem above.

The solution of this problem yields nine regions of the [0, 1] x [0, 1] square where a type-symmetric
electoral equilibrium (v, d) might, in principle, be located: the interior, the sides (vertices excluded)
and the vertices. Since W is affine in 4 and 5, the conditions that characterize each of these type-

symmetric equilibrium possibilities are as follows:

Ey5. (7,6) € (0,1) x (0,1): Hp (n,p,v,0) =1IIg (n,p,7,0) = ¢
E.o. (7,9) € (0,1) x {0}: IIg (n,p,7,6) = c and g (n,p,7,0) < ¢
E;1. (7,6) € (0,1) x {1}: Hp (n,p,7,6) = c and Il (n,p,7,6) > ¢
Eos. (v,0) € {0} x (0,1): I (n,p,7,0) < c and g (n,p,v,d) = ¢
Ego. (v,6) € {(0,0)}: Il (n,p,7,6) < cand IIg (n,p,7,0) < ¢
Eoi. (v,0) € {(0,1)}: g (n,p,7,0) < c and g (n,p,7,0) > ¢
Eys. (v,6) € {1} x (0,1): g (n,p,7,6) = c and IIg (n,p,7,0) = ¢;
Ei. (v,0) € {(1,0)}: IIg (n,p,v,d) > c and IIg (n,p,7,0) < ¢;
Eii. (7,0) € {(1,1)}: T (n,p,7,0) = c and Ik (n,p,7,0) = c.
The following claims on properties of the functions Il g and ITz and on the conditions for emergence
of different equilibrium types will be key in the proof of Proposition 1. Whenever not mentioned

explicitly, we are considering the electoral game in which n > 2 is the number of citizens and ¢ € Ry

is the voting cost.

Claim 1 Givenn > 2, pe (0,1) and (v,0) € [0, 1]2, we have g (n,p,7,0) =g (n,1 —p,0,7).

Proof. This can be checked immediately from (1) and (2). =

Claim 2 Givenn > 2, c € Ry and p € (0,1), (v,9) is a type-symmetric equilibrium of the electoral
game with these parameter values if and only if (5,7) is a type-symmetric equilibrium of the electoral

game with parameters values n, ¢ and 1 — p.

Proof. This follows immediately from the nine cases considered above and Claim 1. =
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Claim 3 E,o-, Eys-, Eoi- and Eio-type electoral equilibria do not occur.

Proof. Let ¢ € (0,1]. Note from (1) and Claim 1 that
g (n,p,0,6) = (L= (L =p)&)" " + (n = 1) (1 =) 6) (1~ (1~ p)8)" "

and
HR (n7p707 5) == HB (71, 1 - D 67 O) = (1 - (1 _p) 5)71_1 .

Since (1 —p) d < 1, we have Ilg (n, p,0,8) —IIg (n,p,0,6) = (n — 1) (1 — p) &) (1 — (1 —p) 6)" % >
0. This rules out both Egs- and Eg;-type equilibria.

Having established the impossibility of occurrence of these equilibrium types, E,o- and Eqo-type

equilibria are also impossible, by Claim 2. =

Claim 4 An Eyg-type electoral equilibrium occurs if and only if ¢ > 1.

Proof. By (1) and (2), we have

—1
HB(n,p,O,O):<Og 1)00001"—1:1><1><1x1:1 (19)
y U, b —
and
n—1 001 n—1
Mg (n,p,0,0) = { o~ JO0° " T =1x1Ix1Ix1=1.

Thus, the necessary and sufficient condition for an Ego-type equilibrium, IIg (n,p,7,d) < ¢ and

IIg (n,p,v,0) < ¢, becomes simply ¢ > 1. =

Claim 5 If (v,9) is an E,s-type electoral equilibrium, then § = (p/ (1 —p))~.

Proof. In such an electoral equilibrium, we must have, by (1),

%5
c = Hp(n,p,7,0)= kzo <k, k‘,;:—_ll_ 2k;> () (1= p) ) (1 — pry — (1 — p) 812
%52 L
" Z (kz E+1,n—2— Qk) P (1 =p) O (1 —py— (1 —p)s)" 2%
k=0 ’ )
L= _—
- Z (k‘ kn—1— 2/€> (p'Y)k (1-p) 5)k (1—py—(1-p) 5)n7172k
k=0 [
5 -l k k 22k
+(1-p)o kZ:O (k,k—l—l,n—2—2k> (P7)" (1 =p)o)* (A —py—(1—p)o)" "
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and
c = HR(Tl,p,')’,d):HB(n,l—p,é,'Y)
& n—1 k(K k
— 1 _ 1 _ 1 _ _ n—1-2
> (o 2 ) (@=L = (=5 = p)
Lz n—1 ko \k 22k
1—p)o 1—(1—=p)d—py)"
+p7kzo <k’k+1’n_2_2k>(( p)8)" ()" (1= (1 =p) & —py) :
where we have applied Claim 1.
In more concise notation, we can write ¢ = k + (1 — p) d\ and ¢ = Kk + pyA, where
5]

I— —
A= Z <kk—|—1nn_12_2k> (p,y)k((1_p)5)k(1_p7_(1_p)5)n—2—2k
k=0 ’ )
> (ol ) 0 =0 (== (=2 = (= ) (=g = (=)o),

which is positive since py + (1 — p) § is an average between « and §, both of which are lower than 1.

Therefore, (1 —p)d = (¢ — k) /\ = pv, and the thesis follows. =

Claim 6 If (v,1) is an E,i-type electoral equilibrium, then p > 0.5 and v > (1 — p) /p. If (1,9) is an
Er5-type electoral equilibrium, then p < 0.5 and § > p/ (1 — p).

Proof. First note that, by (1) and (2), we have

=,
o fpod) = (k: kn—1-— 2k) (p’Y)k (1-— p)k (p(1 ,y))n—lf%
k=0 ) 1%
77.22J
n—1 o
! k=0 <k7k + l,n — 92— 2]€> (pW)k (1 —p)kH (p(1 - '7)) 22k
and
|25 o
g (n,p,7,1) = <k k,n—1-— 2k> (1= p)* (p)* (p (1 — 7)) 12k
k=0 y vy
L*2%]
n—1 o
+ =0 (k,k +1,n—2— 2k> (1= p)" (py)F L (p (1 — )220
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Now assume (v,1) is an E,;-type electoral equilibrium. Thus IIg (n,p,v,1) = ¢ < g (n,p,7,1),

which implies

0 < Hgr(n,p,71) -1 (n,p,7,1)
L& n—1 k k n—2—2k
D S O L e IR
Since v € (0, 1), the terms (pfy)k and (p (1 — ’y))"_2_2’C are positive, so that the above inequality can
only be true if py — (1 —p) > 0, that is, v > (1 — p) /p. Since v < 1, this also implies (1 — p) /p < 1,
that is, p > 0.5.

Finally, if (1,9) is an E5-type electoral equilibrium of the game with parameter p, then, by Claim
2, (9,1) is a type-symmetric equilibrium of the game with parameter 1 —p. As seen above, this implies
1—p>0.5(thatis,p<0.5)and 0 > (1—-(1—p))/(1—p)=p/(1—p). =

Claim 7 Given n > 2 and p € [0.5,1), we have Iz (n,p,v,1) = g (n,p,v,1) if v = (1L —p) /p,
HR (7%297% 1) > HB (n7p771 1) /Lffy € ((1 _p) /pa 1); and HR (nap7’77 1) Z HB (napa/% 1) lfpy =1

Proof. Expressions (1) and (2) yield

HR (Tl,p,’}/, 1) - HB (ml%% ]-)

LSJ < n—1 ) (1= p) (py)* L (1 = pry — (1 — p))" 22k
= et k,k+1,n—2-2k p) (pY Py P
=2,
> <’f k+1,n— 2—21:) (e A =p)™ (1= py— (1 —p))" "
k=0 ’ )
[%52] L
i (’“ k+ln—2- %) ()" (1 =p) (1 —py— (=) (ry — (1-p))
k=0 ) )

|22

- i) kz_o <k k+ 1nn_—1 2 - Qk) ()" (1=p)* (p (1 =7)" 7.

The result follows immediately from this computation. One may note that, in case v = 1, the

above expression is zero if p = 0.5 or n is odd, and positive otherwise. m
Given n > 2, let Y, : [0.5,1) x [0,1] — R be given by

T ( ) HB (napv Y, %7) if v E 07 1%27
b,v) =
" HB (n7p7’77 1) if v e 1%71
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As a consequence of the previous claims, we have

Claim 8 Givenn > 2, ¢ € Ry and p € [0.5,1), the conditions that characterize the four kinds of

type-symmetric electoral equilibria that may emerge can be rewritten more simply as:

Ei. (7,6) € {(1,1)} and Ty (p,7) = ¢
E, . (7,0) €[(1-p)/p,1) x {1} and T}, (p,7) = ¢
E. 5. (7,6) € (0,(1-p)/p) x (0,1), 6 = (p/ (1 = p)) v and Ty, (p,7) = ¢

EOO° (775) € {(an)} and T, (pa’Y) <ec

Proof. That these are the only four possibilities for a type-symmetric electoral equilibria for a
p € [0.5,1) follows from Claims 3 and 6.

Note that (1,1) is an Ejj-type electoral equilibrium if and only if IIg(n,p,1,1) > ¢ and
Ilg (n,p,1,1) > ¢, which occurs if and only if IIg (n,p,1,1) > ¢ (Claim 7 guarantees Il (n,p,1,1) >
I (n,p,1,1)), that is, if and only if T, (p,1) > c.

In the same way, (7,1) is an E,1-type electoral equilibrium if and only if v € (0, 1), IIp (n,p,7v,1) =
cand IIg (n,p,7,1) > ¢, which occurs if and only if v € [(1 — p) /p, 1) (by Claim 6) and IIg (n,p,v,1) =
¢ (Claim 7 guarantees Ilg (n,p,7v,1) > g (n,p,v,1) for v > (1 —p) /p), that is, if and only if v €
[(1=p)/p,1) and T, (p,7) = c.

As for the interior equilibrium case, (7, 6) is an E,s-type equilibrium if and only if (,4) € (0,1) x
(0,1), Iz (n,p,v,0) = ¢ and g (n,p,7v,d) = ¢, which occurs if and only if v € (0,(1—p)/p),
d=(p/ (1 —p))vy (by Claim 5) and IlIg (n,p,7,d) = ¢, since, by (1) and (2),

L5
p n—1 k k n—1-2k

I )= 1-2

R (n,p,% l _pv) ;;o <kkn 1 2k> (p7)" (p)" (1 = 2py)

SER n—1 k k41 22k p

+ n—2—
1-2 =TI £ 4.

+ ,;:0 (k,k+ n—9_ 2k> (p)" (py)"" (1 = 2py) B (mp,% 7 _p7>

In other words, if and only if v € (0, (1 — p) /p), 6 = (p/ (1 —p)) v and T, (p,7y) = c.

Finally, (0,0) is an Ego-type electoral equilibrium if and only if I (n,p,0,0) < ¢ and
Il (n,p,0,0) < ¢, which occurs if and only if IIg (n,p,0,0) < ¢ (the proof of Claim 4 shows that
Ilg (n,p,0,0) =1 =1Ig (n,p,0,0)), that is, if and only if T, (p,0) <c. =

A function that appears in the above proof will appear many other times in this appendix, making

it useful to dedicate a separate lemma to its behavior.
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n—1
Lemma 8 The function P, : [0,0.5] — R given by P, (o)) = ,L:f) J (k,k,gillfmc) ok (1 —2a)" 172k
n—2
Z,Lé J (, k+1”;_12_2k) R (1 — 204)"_2_21~C is continuous on [0,0.5] and continuously differentiable on

(0,0.5), where P, < 0.

Proof. Continuity and continuous differentiability follow from the simple fact that P, is a poly-
nomial function. That its derivative is negative is proved in Lemma 2 of Taylor and Yildirim (2010a).

The conditions stated in Claim 8 are more convenient to work with than those involving Il and
IIr derived at the beginning of this appendix, since they depend on one function (and with one less

argument) only. It may also be noted, by (3) and (4), that, for any p € [0.5,1),

¢, (p) =Tn(p, 1) (20)

and
Cn(p) =Tn(p,(1—p)/p)=Pu(1-p). (21)

Continuity of Y, is clear: for all (p,v) € [0.5,1) x [0,1], we can write T, (p,7)
Ig (n,p,v, min (1, (p/ (1 — p)) 7)), composed of continuous functions only (recall IIg (n,p,-, ) is poly-
nomial). Differentiability of Y, is much less clear — nonetheless, it will be proven in Claims 10 and 11

ahead, with aid from the following basic fact from real analysis.

Claim 9 Given an open interval I, T € I, and a continuous f : I — R that is differentiable over
I\ {z}, if imy_z ' (x) = L € R, then f is differentiable at T, and f'(Z) = L.

Proof. Given ¢ > 0, since I is open and lim,_.z f'(z) = L, we know that there exists
d > 0 such that 0 < |z —Z| < § implies z € I and |f'(z) — L] < e. Now, for any z such
that 0 < |z —Z| < ¢, since f is continuous over [min (Z,z), max (Z,z)] and differentiable over
(min (Z, ) ,max (Z,z)), the Mean Value Theorem yields existence of a x,, € (min (Z,z), max (Z,x))
such that f' (z,) = (f (z) — f(Z)) / (x — Z). Finally, because we will have 0 < |z,,, — Z| < |z — Z| < 0,
((f (@) = f (@) /(@ =2) = L[ =|f (zm) - L| <c. m

Claim 10 Given n > 2, we have 91, (p,7) /0y < 0, for all (p,v) € [0.5,1) x (0,1).
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Proof. Let (p,v) € [0.5,1) x (0,1). In case v € (0, (1 —p)/p), then, as noted in the proof of
Claim 8,

23]

p
Tn (p77> = HB (n,p,’y, 7)

g ( el ) ()™ (1 =2p)" 7% (22)

k.k,n—1-—2k
k=0

Ln;Q
n—1 2%+1 n—2-2k
1-2

a polynomial in (p,7), hence continuously differentiable (this observation will be used later, in the
proof of Claim 12). The fact that the partial derivative 07, (p,) /07 is negative follows from Lemma
8: since py € (0,1 —p) C (0,0.5), we can write Yy, (p,y) = P, (p7y), so that, by the Chain Rule,
Ty (p,7) /Oy = pP' (py) <0.

If p = 0.5, then (1 —p)/p = 1 and the proof is finished. If p > 0.5, then (1—p)/p=1/p—1<
1/0.5 — 1 =1, so that we still have to consider the possibility that v € [(1 —p) /p,1).

If v € (1 —p) /p, 1), then, by (1),

122
) = Mapr = Y ("0 et et ea - @)
k=0 T

[z
' kzo <k k+ 111;1 2 — 2k) ()" (1 =p)" (p(1 =),

again a polynomial, hence continuously differentiable. In this case, the fact that 97, (p,v) /0y <
0 will follow from Lemma 1, part (iii) of Taylor and Yildirim (2010b). There, it is shown that
OP (ap,agr,n) /0ap < 0 if ap € (0,p), ag € (0,1 —p] and ap > (1 - Ln/2J*1) apR, where their
ap is our py, their ag is our (1 —p)d, and their P (ap,ag,n) is our lg (n,p,7,5).2> By putting
6 =1, we have ag = py € (1—-p,p) € (0,p), ap =1—-p € (0,1 —p| and ap =py >p(1—p)/p =
1—p> (1 - Ln/2jf1) (1 — p), whence the result from their paper follows and, by the Chain Rule,
oYy, (p,7y) /0y = 0lp (n,p,v,1) /0y = pOP (ap,ar,n) /0ap < 0.

Finally, let us consider the v = 4 := (1 —p) /p case. If we show that lim, .5 9T, (p,7) /0y
exists and equals, say, L (which will be shown to be negative), then 97, (p,7) /0 will also exist and
equal L, by Claim 9 applied to function Y, (p,-) (which is continuous over (0,1) and, as seen above,
differentiable at least over (0,1) \ {¥}). The reason why we choose to show this stronger property is

that it will turn out useful later on, in the proof of Claim 12.

For any v € (0,%), Yo (p,v) = Up(n,p,v,(p/ (1 —p))7). Therefore, the left-hand side limit

23 Although their lemma is stated for ar € (0,1 — p), their proof still holds perfectly if ag = 1 — p, that is,
d =1 (even their last step, which requires noting that 1 — ag — ar # 0), as long as ag # p.
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limy_.5_ 0, (p,y) /07 can be obtained by first differentiating (22) with respect to -y, which yields

Py T ((:_11) 2k)!Qk(m)QlH (1—2py)" % (24)

(n—1)! 2k n—2—2k
— 2(n—1-2 1-2
p Z Kk (n — 1 — 2k)! (n k) (py)™ ( PY)

X LEJ (1)1

P K (k+ 1) (n — 2 — 2k)!
_ I—nz: n_l) 2(n—2—2k)( )2k+1 (1_2 )n—3—2k
P K (k+ 1) (n— 2 — 2k)! P P :

(2k + 1) (py)™* (1 — 2py)" 22

and then taking the limit, which results in

L25
D Z k! :__11)_ 2%)! 2k (1 — p)%—l (2p — 1)n—1—2k 5)
Ln 1
P Z klk! :__11)_ 2k)! 2(n—1-2k)(1 —p)% (2p — 1)n7272k
i i
P Z k! k + 1(;2 (nl_) 9 _ Qk)' (2k + 1) (1 — p)zk (2]? _ 1)n—2—2k
L J

§ : (n— 1) 2k+1 n—3—2k
- 2 —2-2k)(1 — 2p —1 .

Similarly, for any v € (%,1), T» (p,v) = lp(n,p,v,1). Therefore, the right-hand side limit
lim 54 05, (p,y) /07 can be obtained by first differentiating (23) with respect to -y, and then taking
the limit. This results in

p Z JATA :__11)_ 2k)! k(1— p)’ﬁl (1-— p)k (2p — 1)"717% (26)
P VZIJ (n—1) (n—1-2k)(1— p)’f (1 _p)k (2p — 1)n—2—2k
KK (n — 1 — 2k)!
+ LEJ (n—1)! k(1= p)L (1 — )i+l (2p — 1)n 2%
! £kl (k+1)! (n — 2~ 2k)! b p—
_ “Z;;J (n—1)! (n—2—2k) (1= p)* (1 — p)*+ (2p — 1)"32
P2 Hkr1)i(n—2_2k) p - .
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That this is negative follows from Lemma 1, part (iii) of Taylor and Yildirim (2010b), just like in the
€ ((1—p) /p,1) case (note that, since p > 0.5, ap =py=1—p < p).

That (25) and (26) are in fact equal can be seen by subtracting the former from the latter expres-

sion, to obtain

(n—1)! 2%—1 n—1-2k
— k(1— 2p —1
p E R (=1 — 28] (1=p)™  (2p—1)

+p Z k! :__11)_ 2/{:) ( -1- Qk) (1 — p)2k (2p _ l)n—2—2k

L"TQJ

—p = kl(k+1 ()”(;Ll_) 2~ 2k)! (k+1) (1 — p)? (2p — 1)"—2-2k
+p L%J (n—1)! (n —2k) (1 — >2k+1 (2p — 1)%37%
— KLk + D! (n—2-2k)
_ LZ (n-1! (1= p)% 1 (2p— 1) 12
D Bkl (n — 1 — 2k)! P D
Ln 1

n—l 2% n—2-2k
E n—1-2k)(1-— 2p—1

n—l 2k n—2—2k
— n—1-2k)(1- 2p—1

L"’2J+1 (n—1)! / ,
P Z (kK — 1)1/ (n‘— 25! (n — 2]6/) (1-— p)% -1 (2p — 1)n7172k
k'=1
LnT_lJ (n — 1)' o1 o
= Yy (k — 1)k! (n — 2k)! (n—2k)(1—-p)™ " (2p—1)
k=1
[%5*] (n—1)! . R
+pz k'k'(n—1—2k)( n—1-=2k)(1-p)™ (2p—1)
13]- (n—1)! o i
P Z K (n — 1 — 2k)! (n—=1-2k)(1-p)"(2p—-1)
- (n— 1) 21 n—1-2k
w2 G D)k (=2 2R A=) 2= 1) :
k=1

This is zero because the first of these sums equals the fourth one (even when n is even and the fourth
sum has one extra term, since this term will be zero) and the second one equals the third one (even

when 7 is odd and the second sum has one extra term, since this term will be zero).
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Thus, Y, (p,7) /07 also exists, and is negative. =

Claim 11 Given n > 2, we have 0T, (p,v) /Op < 0, for all (p,7) € (0.5,1) x (0,1).

Proof. Let (p,v) € (0.5,1) x (0,1). In case v € (0, (1 — p) /p), just as we noted in the proof of
Claim 10, we have py € (0,1 —p) C (0,0.5) and Y,, (p,7y) = P, (p7y), so that we can use Lemma 8 to
conclude, using the Chain Rule, that 0, (p,v) /0p =P}, (py) < 0.

In the v € ((1 — p) /p, 1) case, as in the proof of Claim 10, we can use Taylor and Yildirim’s (2010b)
Lemma 1. In their notation, Y, (p,7) = P (py,1 — p,n). By the Chain Rule,

0 0 0
8—an (p,y) = @P(p% 1—p,n)y— @P(m, 1—p,n),

where 0P/0ap and OP/0apg are partial derivatives of P with respect to its first and second argument,

respectively.

That the first of these derivatives is negative has been covered in the proof of Claim 10, where
it was noted that the proof in Taylor and Yildirim (2010b) remains valid when 6 = 1 (that is, when
ar = 1—p). Similarly, the expression for 9P (py, (1 — p) d,n) /Oag obtained in their proof also remains
valid when 0 = 1 and, as they show, it equals 0 if n = 2 and is positive (since py — (1 —p) > 0) if
n > 2. Thus, 07, (p,) /Op < 0 also in this case.

Finally, for the p = p:= 1/ (14 ~) (i.e., p is such that v = (1 — p) /p) case, we mimic the discussion
in the proof of Claim 10. If we show that lim,_.; Y, (p,) /Op exists, then Y, (p,~) /Op exists, and
equals this limit (which will be shown to be negative), by Claim 9 applied to function T, (-,7) (which
is continuous over (0.5,1) and, as seen above, differentiable at least over (0.5,1) \ {p}). As noted in

the proof of Claim 10, we show this stronger property because it will be useful in proving Claim 12.

For any p € (0.5,p) (so that p can be made to approach p from the left), Y, (p,7y) =
g (n,p,7,(p/ (1 —p))7), since v = 1/p—1 < 1/p— 1 = (1 —p) /p. Therefore, the left-hand side
limit lim,_5— 0Ty, (p,7) /Op can be obtained by first differentiating (22) with respect to p, and then
taking the limit. By the symmetry of (22) with respect to p and -+, the derivative at hand will be
similar to (24), the difference being that p and « would be switching places. A quick look at (24)
shows that this means that 7, instead of p, will be multiplying each of the four sums there. After
plugging in v = (1 — p) /p, as seen in the proof of Claim 10, (24) becomes (25), which turns out to
be equal to (26). Therefore, lim,_,;— 0y, (p,y) /Op amounts to (26) evaluated at (p,~), divided by p

46



and then multiplied by v = (1 — p) /p:

e e
1-p10. ( 119)
p poy D

LHT_IJ (n _ 1)! 1 2k /e — n—1-2k
- ke (1=p)7 (2 —
z:kkazl 2@& (=27 (- 1) @ﬂ
k=0
LnTilJ (n _ 1)! 1 \2k+1 o —2—2k
“EZk%un—1—%mU%4f2@p (1=p)"" (20— 1)"
. \‘EJ (n _ 1)[ k;’fl (1 B 7)2]“_1 (2, . 1)n—2—2k’
2 Wk DI (n—2 -2k " P P
& (n— D! (n—2-2k)p " (1-p)* 2 (2p—1)" >
= kl(k+1)!(n—2—2k)! " g g ! |

the negativity of which follows simply from the negativity of 9Y, (p,(1 —p)/p)/0v,Vp € (0.5,1)

proven in Claim 10.

For any p € (p, 1) (so that p can be made to approach p from the right), 1, (p,v) = Il (n,p,7,1),
sincey=1/p—1>1/p—1=(1—-p)/p. Therefore, the right-hand side limit lim, .54 01, (p,) /Op

can be obtained by first rewriting (23) in a slightly more convenient form,

Yo ( _ LGzJ( n—1 )kl_ n—1-2k n—1-k (| _ \k
k=0 Y
|22

n—1 k n—2—-2k n—2—k k+1
E 1-— 1-—

then differentiating it with respect to p, to obtain

& n—1 k n—1—2k n—2—k k
2 (k,k,n—1_2k>7 Q=" =1 k) p 2 (1 - p)
& n—1 k n—1-2k ;. n—1—k k—1
- kZ_O <l’<:,k,n—l—2k:>7 1=1) kp (1-p)
L”EZJ n—1 k n—9—2k - -
+-Z%(hk+Ln—2—%)”(1_” (n—2-k)p (1-p)
& n—1 k n—2-2k n—2—k k
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and finally applying the lim, 5 operator and substituting v = (1 — p) /p, which yields:

| %2] (n—1)! = e o
2 (n—1—2k)!(n_1_k)p (1—p)* (2p—1)" (28)
k=0
5] (n—1)! e
- Z k!k!(n—l_gk)!k(l_p) (2p—1)"
k=0
+ LEJ (n—1)! (n—2—k)p L (1—p)?+L(2p— )22
2o K+ 1)l (n—2—2k) p P P
kzzo kL (k+1)!H(n — 2 — 2k)! p)™ (2p .

That (28) coincides with (27) can be seen by subtracting the latter from the former. This time, a
useful start will be to subtract the two first sums in (27) from the first sum in (28), and the two last

sums in (27) from the third sum in (28), while only marginally rewriting the second and fourth sums
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n (28). This yields

n 1

n—l B 1 — —\ 2k 2—_1)n—1—2k
Z Ll n—l)—Qk) (n—1-2k)p" < +El_p)2k£1]g _l)n—2—2k>

D) 2p
L (n—1)! \2k—1 (- n—1-2k
Z k! n—1—2k)k(1_p) (2p—1)
(n—1)! B (1 _p)%-i-l (25 — 1)" 2—2k
Z N(n—2—2k)! (n—2-2k)p" < b (1= p)PEH2 (25 — )32k
L" S (n—1)! 2%k 22k
Z Kk (n — 2 — 2k)! 1=-p)"2p—-1)"""
L J (n—1)! 2k o~ 1\n—2-2k
kz_o R (n—1 ok "2 =p) T 2=
=l iy

(n—2k) (1— )" (25— 1) 1%

|
ol
-
I

(k — DI&! (n — 2k)!

,_
w[3
[
I
—_

(n—1)!

E'(E+ 1) (n—2—2k)! (n—2-—2k)(1— )2k+1 (2p — l)n—3—2k

+
—
ISR
= 1M
=]
—

L ((:—_11)—! oy (M= [ — )2 (2p — 1)k
k=0
|25
n—1)! o
T k!k!((n_1)_2k) (n—1—2k) (1 — p)2* (2p — 1)» 22k
LnilJ

(n—1)!
(k — 1)'k! (n — 2k)! (n

2]{3) ( )Qk 1 (2]7 - 1)n7172k

gl

ﬁ
ols
|

(n—1)!

\2k'—1 /6= n—1-2k'
(k’—l)!k’! (n—2k’)! (n_2k,) (1_17) (2p—1)

+
(]

—
RIS )
T
L

(n—1)!
Kk (n— 1 — 2k)!

(n—1-2k) (1-p)* (2p— )" 272,

bl
Il
o

This is zero because the first of these sums equals the fourth one (even when n is odd and the first
sum has one extra term, since this term will be zero) and the second one equals the third one (even

when 7 is even and the third sum has one extra term, since this term will be zero).

Thus, Y, (p,y) /Op also exists, and is negative. ®
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Claim 12 The function Y, is continuously differentiable over (0.5,1) x (0,1).

Proof. As noted in the proof of Claim 10, the partial derivatives of T, at any point (p,7y) €
(0.5,1) x (0, 1) such that v € (0, (1 — p) /p) or v € ((1 — p) /p, 1) are continuous, since (22) and (23) are
polynomials in (p,~y). Furthermore, the proof of Claims 10 and 11 show that both partial derivatives
of T, at any (p,7) € (0.5,1) x (0,1) such that v = (1 — p) /p are also continuous. Therefore, T,, is a

C! function. =

Claim 13 Givenn >2 andp € (0,1), ¢, (p) = ¢, (1 —p) and ¢, (p) =<, (1 — p).

Proof. It suffices to note that, for p < 0.5, (3) and Claim 1 give
Qn(p> = HR(nvpvlvl) =1lp (77,,1 _p7171) =Gy (1 _p)7

whereas (4) and Claim 1 give

En(p):HR <n7p7171€p> :HB <n;1_pa1€pyl> :6n(1—p)

Claim 14 Givenn > 2 and p € (0,0.5) U (0.5,1), ¢, (p) < €, (p). If p= 0.5, then ¢, (p) =Ty (p).
Proof. If p € [0.5,1), then (20), (21) give

0 ) = 0 ) = T (1) = Y1),

which is zero if p = 0.5 and, by Claim 10, is positive if p > 0.5.

If p € (0,0.5), then Claim 13 yields ¢, (p) — ¢, (p) = ¢, (1 — p) —¢,, (1 — p), which, as shown above
(since 1 — p > 0.5), is positive. =

Claim 15 The function gn|[0.571) is continuous, strictly decreasing, and lim, .1_c, (p) = 0. The

function En|[0.571) is continuous, strictly increasing, and lim,_;_¢, (p) = 1.
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Proof. Let p € [0.5,1). Expressions (3) and (1) give

[22*]
Z n—1 K kE qn—1—2k
LZEZJ n—1 k k1 k
1— + On—2—2
+ = (k,k+1,n—2—2k>p ( P)

_(n=1)! 2 1_
= %'(%_]fl)l'p nfl( p) n—1
%PT (1-p) 2 if nisodd

2 2 :

w3

if niseven

so that the conclusion lim, .;_c¢, (p) = 0 is valid. Both of these are polynomials in p, whence
continuous. They can also be seen to be strictly decreasing in p for p € [0.5,1). In fact, using the

symbol "~" to mean "shares its sign with", we have, for all p € (0.5, 1),

aap( %_1(1—17)%) = (%—1)19%‘2 (1—10)%—319%‘1(1—19)%_1
n_o n_q n n
- (1) a0 )
p2 " (1-p) 5 (1-p)=5p
n n 1-2p
~ (*—1>(1—p)—*p=—(1—p)+ n,
2 2
which is negative, since it is decreasing in n, and at n = 2 it is already negative (= —p). In the same
way,
0 n—1 n—1 n-1 n-1 m—1 n-1 n—1
— 7 (1 — 2) = = l1op) T — T (1—p) 2z L
8p(p (1-p) p (1-p) 5P 7 (1-p)
n—1 n-1_
= p7 t1l-p T (1-p-p) <0
Therefore, ¢, (p) is strictly decreasing in p for p € [0.5,1).
At the same time, (4) and (1) give, for p € [0.5,1),
l-p L& n—1 2% 1-2k
@ = 1II — 1) = 1- 2p—1)" 30
) = M (n ) = 3 (T o er ) (30)

2

Ln72
n—1 2k+1 n—2—2k
1-— 2p — 1
* kzzo (k,k+1,n—2—2k>( P =) ’

that is, P, (1 — p) (note that 1 — p < 0.5). Thus, Lemma 8 yields continuity and strict increasingness
of nljg.5,1), since, for all p € (0.5, 1), the Chain Rule gives ¢, (p) = —F;, (1 —p) > 0.
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Finally,

|25

- . n—1 2k
i e (p) = <k,k,n—1—2kz>0 +

n—1 02k _ n—1 _q
= EikE+1,n—-2-2k 0,0,mn—1 '

Claim 16 Given n > 2, ¢ € Ry and p € (0,1), there cannot be more than one type-symmetric

equilibrium for the electoral game with these parameter values.

Proof. Assume p > 0.5. If (v,0) is an electoral equilibrium, according to Claims 3 and 6, it
can only be of types E11, E41, Es or Egg. Moreover, Claim 6 assures us that if it is an E,i-type
equilibrium, then v > (1 —p) /p. By invoking Claim 5, we will then have (v,0) either of the form
(v, (p/ (1 =p))7), for v € [0,(1 —p) /p), or (v,1), for v € [(1 — p) /p,1]. This is true of any electoral

equilibrium, so that if there were another one, ('y’ 0 ), it would also take one of these forms.

Without loss of generality, let v < v (v =+ € [0,(1 — p) /p) would imply § = (p/ (1 —p))y =
(p/ (1 —p))y = &, while v = " € [(1—p)/p,1] would imply § = 1 = §'). Claim 10 then yields
Yo (p,7) > Lo (p,Y).

We are now left with three possibilities for the equilibrium type of (v,0) (Eq1 is excluded because

we cannot have 1 < «/).

/

Possibility 1: (v,0) if of the Egp type. Then (’y’, 5’) is either of the Eq11, the E,; or the E5 types.
)

In any case, we would obtain Y, (p,7) <c¢ < 7T, , a contradiction.

(P, y
Possibility 2: (v, 6) if of the E,5 type. Then (’y’, 5’) is either of the Eqq, the Eq or the E,s5 types.

In any case, we would obtain 1, (p,7) = ¢ < T, (p,7’), a contradiction.

Possibility 3: (v,0) if of the E,; type. Then (’y', 5’) is either of the Eq; or the E,; types. In any

case, we would obtain Y, (p,v) = ¢ < T, (p,7'), a contradiction.

If p < 0.5 and (v,0) and ('y’ ,5') are two different type-symmetric electoral equilibria, then, by
Claim 1, (d,7) and (5’,7’ ) would be two different type-symmetric electoral equilibria for the game

with parameter value 1 — p (> 0.5) instead of p, contradicting the argument above. ®

We are now ready to prove Proposition 1.

Proof of Proposition 1. First, let us assume p € [0.5,1). By Claims 14 and 15, we know
that 0 < ¢,, (p) <, (p) < 1, with ¢, (p) = ¢, (p) only in the p = 0.5 case.

If ¢ < ¢, (p), since ¢, (p) = Yy, (p,1) by (20), then the first condition in Claim 8 shows that

(7,9) = (1,1) is an electoral equilibrium. Thus Claim 16 guarantees its uniqueness among type-
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symmetric equilibria. The same comment regarding uniqueness applies to each of the situations

considered below, and will be omitted for brevity.

If ¢ € (¢, (p) ,¢n (p)) (which is a possibility as long as p # 0.5), then (20) and (21) give T, (p,1) =
¢, (p) < c<e(p) = YTn(p,(1—p)/p). By the continuity of Y, (p,:) and the Intermediate Value
Theorem, there exists v € ((1 —p) /p,1) such that ¢ = Ty, (p,y) (= g (n,p,7,1)). As can be seen

from the second condition in Claim 8, this means that (v, 1) is an equilibrium.

If c =%, (p), then (21) gives Y, (p, (1 — p) /p) = ¢. Thus, again from the second condition in Claim
8, (1 —p)/p,1) is an equilibrium.

If ¢ € (¢,(p),1), then (21) and (19) give YTn(p,(1—p)/p) = C(p) < ¢ < 1 =
I (n,p,0,0) = Y, (p,0). Again by the Intermediate Value Theorem, there exists v € (0, (1 — p) /p) =

(0,min (1, (1 —p) /p)) such that ¢ = ¥, (p,y) (=g (n,p,v,p/ (1 —p)7)). As can be seen from the
third condition in Claim 8, this means that (y,p/ (1 — p)~y) is an equilibrium.

Finally, if ¢ > 1, then by Claim 4 we know that (v,d) = (0,0) is an equilibrium.
Now for the p < 0.5 case, in which, by Claim 13, we have ¢, (p) = ¢,, (1 — p) and ¢, (p) = ¢, (1 — p).

If ¢ <¢,(p) (= ¢, (1—p)), then, as proved above, (1,1) will be an equilibrium of the electoral
game with parameter value 1 — p. Thus, by Claim 2, (1,1) will be an equilibrium of the game with

parameter value p.

Ifce (¢, (p),en(p) (= (¢, (1 —p),e, (1 —p)) by Claim 13), then, as proved above, there will exist
v € (p/ (1 —p),1) such that IIg (n,1 — p,7',1) = c and (v, 1) is an equilibrium of the electoral game
with parameter value 1 — p. Let § := 4. Then, by Claim 2, (1,6) will be an equilibrium of the game
with parameter value p, and it follows from Claim 1 that g (n,p,1,8) =1z (n,1 —p,~',1) = c.

If ¢ = ¢ (p) (= ¢ (1—p)), then, as proved above, Ip(n,1—p,p/(1—p),1) = ¢ and
(p/ (1 —p),1) will be an equilibrium of the electoral game with parameter value 1 — p. Thus, by
Claim 2, (1,p/ (1 — p)) will be an equilibrium of the game with parameter value p, and it follows from
Claim 1 that g (n,p,1,p/ (1 —p)) =M (n,1 —p,p/ (1 —p),1) =c.

If ¢c € (¢u(p),1) (= (€ (1 —=p),1)), then, as proved above, there will exist 4" € (0,p/ (1 —p))

such that Iz (n,1 —p,7,((1 —p) /p)¥) =Ugr (0,1 —p,7, (1 —p) /p)7') = cand (v, ((1 —p) /p) )
is an equilibrium of the electoral game with parameter value 1 — p. Let v := ((1—p)/p)y €

(0,1) = (0,min(1,(1 —p)/p)). Then, by Claim 2, (v,(p/ (1 —p))7y) will be an equilibrium of
the game with parameter value p, and it follows from Claim 1 that IIp (n,p,v,(p/ (1 —p))y) =
g (n,1=p+,((1=p)/p)y)=c

Finally, the argument already given for the ¢ > 1 case remains valid. m

Given the proof of Proposition 1 and the resulting definition of functions vz and ~yp, Claim 2
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could be restated in a much simpler form:

Claim 17 Givenn>2,c€ Ry andp € (0,1), vg(n,c,p) =y (n,c,1 —p).

Next we pave the way for the proof of Proposition 2.

Claim 18 Given n > 2, the type-symmetric Nash equilibrium (yg (n,c,p),vg (n,c,p)) varies con-

tinuously with ¢ and p.

Proof. Consider the problem used to find the type-symmetric Nash equilibria, stated at the
beginning of this appendix:

., max v (na Capa’?a 57’7) 5) .
(7,6)€l0,1]x[0,1]

Let n be fixed. The solution to this problem, the existence of which is assured by the Extreme

Value Theorem, is the correspondence I' that maps each tuple (¢, p,~,d) to the set {(’y, <~5> : (’y, 5) €

AG MAX (5 5)e(0.1]x[0,1] 1 (n, ¢, p, 7, 0,7, 5) } For notational purposes, denote 6 := (¢, p) and z := (7, 9),

so that the solution of the problem can be denoted I" (6, z). This problem fulfills all the conditions of

is continuous for being constant), which implies that I' is upper hemicontinuous in (6, x).

For a given 6, note that a fixed point of T'(0,) (i.e.,  such that x € T'(0,z)) is precisely what
we have called a type-symmetric Nash equilibrium of the electoral game, and by Proposition 1, such

a fixed point exists and is unique. The function that maps each 6 to the fixed point shall be denoted
z* (that is, z* () = (vp (n,") , YR (1,)))-

Consider now the problem of choosing x so as to minimize the Euclidean distance d between x and

I (6,z), d(z,T(0,2)):=inf{|z —y|| : y € T (0,2)}:

i d(z,T (0 .
e (z,I'(0,2))
Since I' (6, -) is compact-valued (because I' is upper hemicontinuous), we have d (z,I' (6, x)) = 0 if and
only if z € I' (6, ). But note that this zero distance is actually attainable, if we take z = z* (f) (and

only if, because of the uniqueness of this fixed point).

Thus, z* (6) is the unique solution to the above minimization problem. A second application of
Berge’s Maximum Theorem now implies the continuity of x*, that is, that v and § vary continuously

withpande. ®

54



Proof of Lemma 1.  Let us first assume p € [0.5,1). Since ¢ € (¢, (p),1), Proposition
1 guarantees that (yg (n,c,p),vg(n,c,p)) will be an E.s-type equilibrium, that is, vz (n,c,p) €

(0,(1=p) /p), Yr (n,¢,p) = (p/ (1 = p)) v (n,¢,p) and Ty (p, 75 (n,¢,p)) = ¢.*

Claim 15 gives ¢, (p) > ¢, (0.5), so that also ¢ € (¢, (0.5),1), and Proposition 1 guarantees
that (v* (n,c),(0.5/(1 —0.5))v* (n,c)) = (v*(n,c),v* (n,c)) will be an E,s-type equilibrium of the
electoral game with the probability parameter 0.5. That is, v* (n,¢) € (0,1) and Y, (0.5,7* (n,¢)) = c.

Now, by (22), when v < (1 —p)/p as in both cases above, T, (p,7) = P, (py) (note that
py € (0,1—p) C [0,0.5]). By Lemma 8, P, is strictly decreasing, whence injective. There-
fore, Y, (p,vg(n,c,p)) = ¢ = Y,(0.5,7"(n,c)) implies P, (pyg(n,c,p)) = P, (0.57" (n,c)),
which, in its turn, yields pyg (n,¢,p) = 0.59* (n,c), and vg (n,c,p) = (p/ (1 —p))vg (n,c,p) =
0.59" (n,c) / (1 = p).

If p € (0,0.5) (so that 1 —p € (0.5,1)) and ¢ € (¢, (p), 1), then, since ¢, (p) = ¢, (1 —p) (Claim
13), we have ¢ € (¢,(1 —p),1) and, from the argument above and Claim 17, we get 7" (n,c) €
0,1), 7" (n,¢)/ (2(1 =p)) = vp(n,¢,1=p) = Yr(n,¢,p) and 7" (n,¢) /(2p) = YR (n,c,1—p) =
75 (n,¢,p). ™

Proof of Proposition 2. Continuity was proved in Claim 18. Therefore, in order to check
the claimed monotonicity properties of v and v with respect to p and to ¢, it suffices to check
these properties over the following four open regions of the plane: {(p,c) € (0,1) xRy :¢c<¢, (p)},
Ay = {(p,e) € (0,1) xRy :¢,(p) <ec<ty(p)}, A2 := {(p,c) €(0,1) xRy :¢, (p) <c< 1} and
{(p,c) € (0,1) x Ry : ¢ > 1}. Over the first and fourth of these regions, besides A;N (0,0.5) x R4,
Proposition 1 shows that vz will be a constant (1, 0 and 1, respectively), so that it is decreasing
(although not strictly) in ¢ and in p. The same applies to 7y over the first and fourth regions, besides

AN [0.5,1) x Ry, which will thus be decreasing in ¢ and increasing (not strictly) in p.

We may then argue for the claimed monotonicity properties by simply computing the requested par-
tial derivatives in the remaining regions. It will also be convenient to define Az := {(p,c) € (0,1) xRy :
¢, (p) < ¢ < 1}, which includes both A; and Aj. Note that these three sets are open, because of the
continuity of ¢, and ¢, (by Claims 15 and 13). This makes the computation of partial derivatives of

~vp and vy within these regions fairly straightforward.

It will be helpful in the computation of these derivatives to note two properties beforehand. The
first one is that, if p € (0.5,1) and (p,c¢) € As, then Proposition 1 implies vz (n,c,p) € (0,1) and
Y, (p,v5 (n,c,p)) = c. The second one is that, if (p,c) € Ay, then Proposition 1 implies vz (n,¢,p) €
(0, min (1, (1 — p) /p)) and ¢ = T (m,p, 75 (n,¢,p) , (0] (1 — P)) 13 (ms ,9)) = P (v (m, ;) (this
can be computed since pygz (n,c,p) € (0,pmin (1, (1 —p) /p)) = (0, min (p, (1 — p))) C (0,0.5)).

24 After this initial observation, the proof could also be followed as in Proposition 3 of Goeree and Grofer
(2007), where an E,s-type equilibrium is assumed from the start.
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i)

a) Assume c € (¢, (p), 1), so that (p,c) € As. In this case, as noted above, P, (pyg (n,¢,p)) = ¢
Lemma 8 guarantees that P, is continuously differentiable at pyg (n,¢,p) and P) (pyg (n,c,p)) < 0,
so that the Implicit Function Theorem gives

1

0
— n,c,p) = < 0.
g (mep) PP, (pyp (n,c,p))

Also, Proposition 1 yields vy (n,c,p) = (p/(1—p))vg(n,c,p), so that Oyp(n,c,p)/dc =
(p/ (1 =p)) Ovp (n, ¢, p) /Oc < 0.

Now assume ¢ € (¢, (p),1), so that (p,c) € As. If p = 0.5, then ¢, (p) = ¢, (p) by Claim
14, so that (p,c¢) € Ay and the above proof is applicable. If p € (0.5,1), then vz (n,¢,p) € (0,1)
and Y, (p,v5 (n,c,p)) = ¢, as noted above. By Claim 12, T,, is continuously differentiable at
(p,vg (n,c,p)) € (0.5,1) x (0,1) and, by Claim 10, 91, (p,vg (n,c,p)) /Oy < 0. Thus, we can apply
the Implicit Function Theorem to get

1

Q,y (n,c,p) = <0
80 B o %Tn (pafYB (n,C,p)) .

b) Let us now assume p € (0,0.5). For ¢ € (¢,(p),1), it was already shown in part
(a) that Ovg(n,c,p)/0c < 0 (that part of the argument holds for all p € (0,1)). For ¢ €
(¢, (p),1) (= (¢, (1 —=p),1), by Claim 13), since 1 — p € (0.5,1), we already know from part
(a) that 0vg(n,c,1—p)/0c < 0. Since v (n,-,p) = vg(n,-,1 —p) (Claim 17), we then have
Ovg (n,¢,p) [0c = Oyp (n,¢,1 = p) /0c < 0.

i)

a) The structure of the proof of part (a) can be applied here as well. If ¢ € (¢, (p),1), then
(p,c) € As and, as explained above, ¢ = P, (pyg (n,¢,p)) = P, ((1 —p)vg (n,¢,p)), where the last
equality follows from Lemma 1. Therefore, the Implicit Function Theorem yields

9 _ Yr(m¢p)

%’YR (n,c,p) = ﬁ > 0.

If c € (¢, (p),1), then (p,c) € As, and there are two cases to consider. If p = 0.5, then ¢, (p) =
¢n (p) by Claim 14, so that (p,c) € Ay and 5 (n, ¢, p) is determined through P, (pyg (n,¢,p)) = c. In

this case, an application of the Implicit Function Theorem gives

vg (n,¢,p)
p

0
aip’YB (na Cap) == <O0.
If p € (0.5,1), then Y, (p,vg (n,c,p)) = ¢ and, as argued in part (a), dyg (n, ¢, p) /Op can be obtained
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via Implicit Function Theorem:

oSl

Tn (p7 B (n7 &) p))
T

gv (n,c,p) = —
8]9 B o ~ n(p7'YB (n,c,p))

Q

Since both numerator and denominator are negative, by Claims 11 and 10, we have
dvp (n,c,p) /Op <O0.

b) Let p € (0,0.5). For ¢ € (¢, (p),1), as argued in part (a), we have P, (pyg (n,¢,p)) = ¢, so that

the Implicit Function Theorem gives

B (n7 C7p)
p

0
2,)® (n,c,p) = — < 0.

Finally, for ¢ € (¢, (p),1) = (¢, (1 —p),1), as shown in part (a), dyg (n,c,1 —p) /Op < 0. Therefore,
since v (n,+,p) = vg (n,-,1 — p), the Chain Rule yields 0y (n,c,p) /Op = —0v5 (n,¢,1 —p) /Op > 0.
| |

Proof of Lemma 2. If p € [0.5,1), then, as observed in the proof of Claim 15, ¢, (p) =
P, (1 — p), which is strictly decreasing in n, as shown in the beginning of the proof of Lemma 3 in
Taylor and Yildirim (2010a, p. 367).

If p € (0,0.5), then, by Claim 13, ¢, (p) = ¢, (1 — p), which, as argued above (note that 1 —p €
(0.5,1)), is strictly decreasing in n.

In what concerns the limit of ¢, (p), it follows from Proposition 2 and Lemma 3, parts (i) and (ii)
in Taylor and Yildirim (2010a) that, given p € (0,1) and ¢ € (0,1), there exists ng (¢, p) € N such that,
for any n > ng (¢, p), the equilibrium of the electoral game with parameter values n, ¢ and p will be of
the interior type. Therefore, given ¢ > 0, without loss of generality ¢ < 1, our Proposition 1 ensures

that, for all n > ng (g,p), € > ¢, (p) = |&n (p) — 0, i-e., limy, 00 &, (p) = 0.

The fact that lim, .. vg (n,¢,p) = limy,_00Yr (n,¢,p) = 0 is also proven in Lemma 3, part
(i) of Taylor and Yildirim (2010a), whereas the existence and positivity of lim,_,, nyg (n,c,p) and

lim;, 0o YR (7, ¢, p) are proven in Lemma 4 of that work. m

Proof of Lemma 3. Let ¢ € (0,1) be given. For each p € [7,1 — g|, Lemma 2 and the Well
Ordering Principle guarantee the existence of the smallest natural number k£ > 2 such that ¢ (p) < c.

Call this number 7 (c, p).

Claim 13 readily yields 7 (¢,1 —p) = n(c,p). We now argue that 7 (c,p) is decreasing in p for
p € [g,0.5] (and, therefore, increasing in p for p € [0.5,1 — ¢]). In fact, let p1,p2 € [7,0.5] be such
that p1 < pa. By Claim 15, we have, for any natural & > 2, ¢ (p1) > ¢ (p2). In particular,
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ET“L(c,pl) (pZ) < 61'1(c,p1) (pl) < ¢, so that n (C,pg) <n (C, pl)'

Thus, we have shown that, for a given ¢ € (0,1), n(c,p) is bounded for p € [g,1—¢|, by
n(e,1—q) =n(cq). Define ng (c) = n (e, q).

Now, given n > ng (¢) and p € [g, 1 — q], since ng (¢) > n (¢, p), we have n > n (¢, p), so that Lemma

2 yields ¢, (p) < C(cp) (p) < ¢ < 1. Therefore, by Proposition 1, (v (n,¢,p) ,vg (n, ¢, p)) € (0, )% m
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Appendix B

This appendix presents proofs for all of the results stated in sections 4 and 5.

Before getting started, we show a computation that will be used in several proofs. Given n > 2,
ce Ry and p € [g,1 — ¢|, by plugging (10), (11), (13) and (14) into (9), we get
Uncpq) = — [ n? (p—0)° (7% (n.c.p) + 7 (n..p) +n (q75 (n,e.p)) (1 = a7 (n.c.p)) ]

+n (L —q)vg(n,e,p)) (1 = (1 —q)vg (n,c,p))
(31)

If ¢ € (0,1) and n > ng(c), Lemmas 3 and 1 yield vg(n,c,p) = ~v*/(2p) and ~vi (n,c,p) =
v*/(2(1 —p)), where v* = ~v* (n,c) € (0,1). In this case, (31) can be rewritten as

*2 *2 * * 1_(]'}’* 1_q,y*
U (n,c,p, = —n?(p-— 2<7 +7>_nq7 <1_q7>_n <1_ >
(m,e.2,9) =0 {4 1(1—p)? p2 p2 1—p2 1—p2
g 2 ey (p— ) (32)
2 p 4 p? 4 p?
o log (=g 0P (p—g)
2 1-p 4 (1-p® 4 (1-p)?

Several proofs below will involve differentiation of U with respect to p, the pollster’s choice variable
(viewed as a function of p, the above expression obviously belongs to C* ([g,1 — q])). As seen in (32),
in doing so, we need not worry about p entering U (n, ¢, p,q) implicitly, perhaps inside a vz (n, ¢, p)
or vg (n,c,p) expression as in (31). This shows how Lemma 1 (and Lemma 3, which allows us to use

Lemma 1 for a sufficiently large n) is key in this study.

Proof of Proposition 3. For any p € [7,1 — q], since ¢ = 0, Proposition 1 yields the electoral
equilibrium is (yz (n,¢,p),vr (n,¢,p)) = (1,1). Therefore, by (31),

U(n,ep,q)=—[n*(p—q)*2+ng(1—q)+n(1—-q)(1-(1—q))| =—2n2(p—q)° —2ng (1 —q).

It is clear that the maximum value of U (n,¢,p,q) occurs only at p=¢q. ®

Claim 19 Given ¢ € [g,1—q], ¢ € (0,1) and n > mno(c), if pi(c,q) is a solution to

max,e(z1—q U (n,e,p,q), then 1 —p (c,q) is a solution to max,e(z1-g U (n,e,p, 1 —q).

Proof. Since ¢ € (0,1) and n > ng(c), (32) holds. Note from that expression that
U(n,c,p,l—q):U(n,c,l—p,q).
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Now, if r € [g, 1 — q] were such that U (n,c,r,1 —q) > U (n,c,1 —p} (¢,q),1 — q), then we would
have U (n,c,1 —r,q) > U (n,c,p} (¢,q) ,q). Since 1 —r € [g, 1 — §], this would contradict the fact that

pr, (¢, q) is a solution of max,cig1-g U (n,¢,p,q). ™

Before proving Proposition 4, we state a couple of lemmas about the pollster’s utility function.
Since we assume that the reader is more interested in following the development of proof strategies,
rather than big calculations, in the proofs below we unashamedly make use of mathematical software
to help with the computation of derivatives and algebraic manipulations; this is indicated by the "="

symbol. We will continue to employ the symbol "~" to mean "shares its sign with."

Lemma 9 Given ¢ € [g,1—q], ¢ € (0,1) and n > no(c), if v*(n,c) < 1/n, then
0°U (n,¢,p,q) /Op* < 0 for all p € (1~ q).

Proof. Since ¢ € (0,1) and n > ng (¢), (32) holds, regardless of the value of p € (g,1 —q). We
now apply the 92/9p? operator to each term in square brackets in (32). First, note that

0 <_m*q Lt iy (p - Q)2>

o\ 2p 4 p 4 p
= 5 q(2p — 3¢ — 2npy" + 3ngY") ~ (3¢ + 2np — 3nq)¥" — 2p.

This is an affine function of v* which, when evaluated at v* = 0, equals —2p < 0, and when evaluated at

v* =1/n, equals 3¢/n+2p—3q—2p = 3¢ (1 — n) /n < 0. Therefore, it is negative for all v* € (0, 1/n].

Similarly, we have

0 ( nm*l—q ny?(1-¢q)° n*y2(p-— Q)2>

W\ 21-p 4 1-p (1-p)
= 20 p)4 (1—¢q) (ny" —3y" —=2p+ 3¢7" + 2npy* — 3ngy* + 2)

~ (Bng—3q—2np—n+3)7y" +2p—2,

and the same reasoning applies: it is an affine function of * which, when evaluated at ~* = 0,
equals 2p — 2 < 0, and when evaluated at v* = 1/n, equals 3¢ —3¢/n —2p — 1+ 3/n+2p — 2 =
3¢ —3q/n+3/n—3=-3(1—-¢q)(n—1)/n <0. Therefore, it is negative for all v* € (0,1/n].

Thus, 0*U (n,c,p,q) /0p?> <0. =

In order to be able to analyze the v* (n,c) > 1/n case as well (for which, unfortunately, U will not
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necessarily be concave in p), it will be useful to establish the notation

(2ngy —ny — 2q + 1) p* + (49 + v — 27 + 2¢*y — 2ngy — 2ng*y — 1) p?

fn (pyg,7) == :
" + (3ngy — 3¢%y — 3¢ + 3ng*y) P* + (¢ + 30>y — ngy — 3ng*y) p+ ng*y — >y
(33)
since differentiation of (32) yields
0 1 ny*
U n,cp, =0 s 4y * 9 34
ap0 (6P 0) 25— p) o (0 0:77) (34)

where, as usual, v* stands for v* (n, ¢).

Lemma 10 Given q € [g,1 —q], c € (0,1) and n > ng (¢), if v* (n,c) > 1/n, then f, (p,q,7* (n,c))
is strictly decreasing in p for p € [q,1 — q].

Proof. Since c € (0,1) and n > ng (¢), (32) holds, regardless of the value of p € [§,1 — g]. From
the hypothesis on v* (= ~v* (n,c¢)) and Lemma 1, we have v* € (1/n,1).

Since f, (p,q,7*) is an affine function of v*, so will be its derivative with respect to p, for any

pE(qvl_Q):

6p%q® — 3ng® — 6pg® — 6p>q — 4np® — ng + 3p? .
Y
+3¢% + 6npq? — 6np>q + Snp3q — 6np?q® + 6npq

0
%fn (pg,7") = (

+q + 12p2q — 8p3q — 6pq — 3p2 + 4p3.

At v* = 1/n, this expression amounts to

0

n—1

[le

-3 (—2pg® — 2p°q + 2% + p* + ¢°)

n—1

= -3 (pZ(l—Q)2+q2(1—p)2) —— <0

At v* =1, it is equal to

0 .
ek (p.q,1) = ((6p—6p*—3)q*+ (8p° — 6p*> +6p—1)q—4p°) (n— 1)
~ (8¢ —4)p* + (—6¢* — 6q) p* + (66> +64¢) p+ (—3¢* — q) =: g (1. q) -

If ¢ = 0.5, then this becomes the quadratic (—18p2 + 18p — 5) /4, the maximum value of which,

61



obtained at the vertex p = 0.5, is —1/8. If ¢ # 0.5, then g (p, q) is a cubic in p, with discriminant

(—6¢° — 6q)2 (64 + 6q)2 —4(8¢ —4) (6¢° + 6q)3 — 4 (—6¢* — 6q)3 (=3¢° — q)
—27 (8¢ — 4)% (—3¢> — q)* + 18 (8¢ — 4) (—64> — 6q) (6¢> + 6¢) (—3¢> — q)
= 432> (1 - q)* (3¢* — 64> +® +2¢+1) ~ 16 (~3¢* +6¢° — ¢* —2¢ — 1).

By letting s := (2q — 1)2, it may be noted that —3s? 4+ 14s — 27 is identical to the above expression.
Since the discriminant of this concave quadratic in s is negative, it is negative itself, and so is the
discriminant above. Thus, g (-, ¢) has exactly one real root p’. This root cannot lie in the (0, 1) interval.
In fact, in case ¢ > 0.5, limp—, 100 g (p,q) = +00 and g(1,q) = —3¢> +Tg—4=(1—¢q)(3¢—4) <0
yield p’ > 1, whereas in case ¢ < 0.5, lim,,_ g (p,q) = +00 and g (0,q) = —3¢? — ¢ < 0 yield p’ < 0.
Therefore, in either case, g (p,q) < 0 for p € (g,1 — q).

Since df, (p,q,~7*) /Op is affine in v* and both df, (p,q,1/n) /Op and Jf, (p,q,1) /Op are negative,
we shall have, for all v* € (1/n,1), 0f, (p,q,7*) /Op < 0, whence f, (p,q,~7*) is strictly decreasing in

pforpe(gl—g]. m

The same way the thesis of Lemma 9 may not hold if v* (n,¢) > 1/n, the thesis of Lemma 10 may
also not hold if v* (n,¢) < 1/n (these claims can be checked numerically). This is why we will need

both lemmas in the following proof.

Proof of Proposition 4. Since ¢ € (0,1) and n > ng (¢), (32) holds, regardless of the value of
p €(q,1—q|, and OU (n,c,p, q) /Op shares its sign with f, (p,q,7*), where v* = v* (n, c).

i) Note that

fa (p,0.5,95) == (2p— 1) (7" — 2p — nv* — pv* + p*¥* + 20° + 3npy* — 3np*y*)

=

so that f,(0.5,0.5,4*) = 0, and 0.5 is a critical point of U (n,c,-,0.5). If v* < 1/n, then
Lemma 9 ensures 0.5 will be the unique solution to (8). If v* > 1/n, then Lemma 10 implies
that, for every p € [7,0.5), fn(p,0.5,7*) > f,(0.5,0.5,7*) = 0, and, for every p € (0.5,1 — ¢,
frn (p,0.5,7%) < f,(0.5,0.5,7*) = 0. Since OU (n,c,p,q) /Op shares its sign with f, (p,q,7*), also in
this case U (n,c, '70'5)’[17,05} will be strictly increasing and U (n,c, -, 0.5)|[0‘5717q], strictly decreasing,

so that 0.5 will again be the unique solution to (8).

ii) The proof follows the exact same lines as the previous case, once we are able to pin down a zero
of fn (+,q,7*) between 0.5 and ¢. It should be noted that

fn (0.5,¢,7%) é% (n=2)7"+1)(2¢—1)>0
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and
fol@,0,7) == (1—7")¢*(2¢— 1) (1 —¢)* < 0.

Because f, (p,q,7*) is a polynomial in p (hence, continuous), by the Intermediate Value Theorem,
there exists p* € (0.5,¢q) such that f, (p*,q,7*) = 0. That is, p* is a critical point of U (n,c,-,¢q) in
the interval [7,1 — g]. Now both cases v* < 1/n and * > 1/n must be considered, in the exact same

fashion as in case (i).

iii) This follows directly from the previous case and Claim 19. =
The following claim follows directly from the proof of Proposition 4.

Claim 20 Given q € [§,1 —q], ¢ € (0,1) and n > ng (c), pk (c,q) is the only p € [§,1 — q] such that
fn (pa Q77* (n7c)) =0.

Lemma 11 Given c € (0,1) and n > ng (c), the function p}, (c,-) is one to one.

Proof. In fact, let ¢1,¢2 € [7,1 — q] be such that p} (¢, q1) = p (¢,q2) and ¢1 # g2. Without loss
of generality, assume q; < g2. By Proposition 4, it must then be the case that either ¢1,¢2 € [g,0.5)

or q1,q2 € (0.5,1 — g]. To fix ideas, we assume the latter for the time being.

Claim 20 guarantees that f, (p,q,7* (n,c)) = 0, together with the constraint p € (0,1), defines
P} (¢,q). In order to conclude that this function is smooth, we must first check for the smoothness of

~* with respect to its second argument.

Proposition 1 guarantees the existence of the electoral equilibrium (y5 (n,¢,0.5),vR (n,c,0.5)).
Since n > ng (c¢), Lemma 3 gives the interiority of this electoral equilibrium, which, by Lemma 1,
then equals (v* (n,¢),v* (n,¢)) € (0,1)%. Proposition 1 implies P, (0.57* (n,¢)) = ¢. Since P, is a C*
function and P} (0.59* (n,¢)) < 0 (Lemma 8), the Implicit Function Theorem guarantees that v* (n, ¢)

will also be continuously differentiable in ¢ for ¢ € (0, 1).

It must also be noted that df, (p*,q,~7*) /Op, where p* is short for p (c,q), cannot be zero. In
fact, the v* > 1/n case is covered in Lemma 10, while if v* < 1/n, then Lemma 9 and (34) give

52 ny* 1 0 0 1
0O > —U , C, *7 = —Jn *7 y * + n *7 ) * a1 \3
37 (ne:p%,0) = = <p*3 T )7 3pf (P, ¢:7") + fn (P 0,7 )8p (p*g(l _p*)3>)
- o, aA Jn [ 8 +0 ~ n )4 .
2 (p*3(1—p*)30pf whe) oy 7
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Now, since f,, is C! as well (it is polynomial), a new application of the Implicit Function Theorem,

but now to the identity provided in Claim 20, guarantees that p¥ itself is C' and

o, ootfn (0, (¢:0) ;0,7 (n, €))
9 (o) = — 35
60" ) = 2 s o e a) 0 (m,0) %)

at any ¢. The most important feature of this identity is that the derivative in the numerator is only

partial (with respect to the second argument).

From Rolle’'s Theorem applied to pj (c,-), there exists ¢ € (q1,q2) such that 9p} (¢,q) /0q =
0. Expression (35) then yields 9f, (ps (¢,q),q,7*) /0q = 0, where v* = 4* (n,c). In other words,
fn (DE (¢,Q),-,7*) is a quadratic in its second argument, as can be seen in (33), with ¢ as a root, and

at which its slope is zero. This implies that this quadratic has a zero discriminant.

However, writing p for p (¢, ¢), its discriminant can be computed as

(@n7* = 2)5* + (4= 207" = 29") 5 + (3n* = 3) * + (1 —ny") )
—4 (27" =207 5 + (307" = 37") 5° + (37" = 3my*) b — 7" +ny*) (° (7" = 1) = 5 (ny" — 1))
[ (4n*y*2 — 8ny* +4) p* + (—8n?y*2 4 16ny* — 8) p°
= p2(1-p)?x + (8n2y*2 + dny*? — 20ny* — 4y*2 + 4y* + 8) p?
+ (12717 —Any*? — An2*2 F 42 — 4yt — 4) P4+ n?y? —2ny* 41
e e el T (80" =12 =497 (1= 7") (n = 1)) 72
= p°(1-p
( 4 (ny* —1) +4’y*(1—y*)(n—1))]5+(7w*— 1)2

+
= PO-7 (2420 +1) (1" P+ 45 (1 -5y (1= 7)) (= 1)] >0,

a contradiction.

Also, if it were the case that ¢1,q2 € [g,0.5), then, using Claim 19, p¥ (¢,q1) = p}; (¢, q2) would
imply p;, (¢, 1—q1) = 1 —p;, (c,;q1) =1 —pj (¢,q2) = p;, (¢, 1 — g2), where 1 — q1 # 1 — go. Thus, by

the argument given above, we again arrive at a contradiction.

Therefore, p} (c,-) is indeed one to one. m

Proof of Lemma 4. Suppose ¢ € (0.5,1 —¢g]. First note that, in this case, ¢(q) < g,
so that (¢(q),q) is an nondegenerate interval indeed. In fact, since 0 < 1/¢ —1 < 1, we have

V1/g—1 > 1/q — 1, so that ¢(q) = (1+\/1/q— ) (1+1/¢—1)"" = ¢q. Also, note that
~1 1
o (q) = (1 ++/1/q— 1) > ( 1/0.5 — ) = 0.5 (if that were not the case, the present proof

could actually be done by a simple call to Proposition 4).

Now, as already noted in the proof of Proposition 4, we have

fa(@ a7 = (1= 2¢-1)(1-¢q)?~1-2¢<0,
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where v* = v* (n, ¢). Also, by (33),

=g (2q-1)/; -1

> 0.
1—|—4q(1—q)+4q,/%—1

Thus, by the Intermediate Value Theorem, f, (+,q,7*) has a root between ¢ (q) and ¢ which, by Claim

fu(0(@),q,7")=(—1)y

20, is necessarily p¥ (¢, q).

If ¢ € [,0.5), then 1 — ¢ € (0.5,1— q|, so that we have already proved that p’ (¢,1—¢q) €
(¢(1-q),1—q). Now, p (¢, 1 — q) = 1—pt, (¢, q) by Claim 19, and, from /1/ (1 — q) — 1\/1/qg — 1 =
Va/ 1 =a)\/(1=q) /a =1, we get

1 -1

¢(1—q) = <1+ 1 _1) . - —1

1
—_— _7:1—7
1—q 1 1 1_
-1 144/t -1 14+, /-1

Q=

= 1- ¢(q).
Therefore> 1 _p:, (Ca q) S (1 - ¢ (q) ) 1- Q)v i.eg p;kz (Ca Q) € (q7 ¢ (Q>) u

Proof of Proposition 5. i) Under conditions ¢ € (0,1) and n > ng(c), as argued in
the proof of Lemma 11, p} (¢, ) is a smooth, and hence continuous, function (this in itself could
also be obtained through Berge’s Theorem). Since it it also one to one by that lemma, it is strictly
monotone (the real analysis lemma we hereby employ follows immediately from the Intermediate Value
Function). Finally, as to whether it is strictly increasing or strictly decreasing: since, by Proposition

4, p¥ (¢,q) < 0.5 =p} (c,0.5), it is strictly increasing.

ii) Using the notation established in Lemma 11, we have, from the Implicit Function Theorem and

the Chain Rule,

an (p;'jb (Ca Q)>q7’7* (n, C)) o
_9 2 tn). Ny
%fn (p:l;z (Ca q) , 4, ’7* (n, C)) 8C’y (TL C) ( )

a ., B
5Pn (c,q) =

By Lemma 3 and Proposition 2, 0v* (n,¢) /Oc = 0vg (n,c,0.5) /Oc < 0. Also, as explained in the
proof of Lemma 11, df, (p*,q,7*) /Op < 0, where p* and v* stand for p’ (¢, q) and v* (n, ¢). Therefore,

Oy, (¢,q) /0c ~ =0fn (p*4,7") /0.

Now, if we write expression (33) as fn (p,q,7) = kn (P,q) + A\ (P, q) 7, since f, (p*,q¢,7*) = 0 by

Claim 20, we have

—Jn ,q, :)\TL s = -
o7 ", ¢:7") (P* ) -

= (1-2¢9)p" + (1 —49)p™ +3qp™ —qp* =p* (1 —p*) (1 — 2¢) p** + 2qp* — q)
(1—-29)p* +2¢p* —q=Q (p*),

~ —HKn (p*7 Q)

~
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where Q (z) := (1 — 2q) 2 + 2qz — q. Thus, 9p}; (¢c,q) /0c ~ —Q (p*), and, in order to conclude that
aps (¢, q) /Oc ; 0if g z 0.5, it suffices to argue that @ (p*) ~ 2¢ — 1.
If ¢ = 0.5, then Q (p*) = p* — 0.5, which is 0 by Proposition 4.
If ¢ # 0.5, then @ (x) is a quadratic in z, and ¢ (¢) happens to be one of its roots:
1—2¢q 2q

Qd(q) = (1-29)(¢(q)*+2q6(q) —q= 5 + — ¢
(1+ %—1) 14,/ -1

2
1—2q+2q(1+,/;—1)—q(1+ 5—1)
2
(1+,/%—1>
1+2q,/%—1—q<1+2 §—1+%—1)
2
<1+,/%—1)

Call its second root ¢, (q).
In the ¢ > 0.5 case, @ is concave and ¢, (q) > 1 > ¢ (q), since Q (1) =1 — 2q + 2¢ — ¢ > 0. Thus,
Q(z) > 0,Vz € (¢(q),q) € (¢(q),1), so that, by Lemma 4, Q (p*) > 0.

In the ¢ < 0.5 case, @ is convex and ¢, (¢) < 0 < ¢ (q), since @ (0) = —¢ < 0. Thus, Q (z) <
0,Vx € (q,¢(q)) € (0,6 (q)), so that, by Lemma 4, @ (p*) < 0 and we are done. =

Before going on to prove Proposition 6, we must establish a bit more notation. Given ¢ € (0,1),
we know, from Lemma 2, that lim,, . 7" (n,c) = 0 and that lim,_,.c ny* (n,¢) = m(c) > 0. Given

q € [g,1 —q|, we can define, for all p € [g,1 — ],

Ule,p,q) = (37)

; _m)g_ (m(e)’ <p—q>2] . [_m(c) L—gq  (m(©)’ (-0’
2

q
P 4 p? 2 1-p 4 (1-p)?

Due to those limits given in Lemma 2, it is just a matter of comparing this expression to (32) to note
that U (¢,p,q) is simply the pointwise limit of (U (n,c,p,q)),cy, viewed as a sequence of functions of

P.

It will be important in the arguments below to note that this convergence is actually uniform.
Since p takes its values on the compact set [, 1 — g|, which is bounded away from 0 and 1, not only
the coefficients of the terms p~!,p~2, (1 — p)_1 ,(1— p)2 appearing in (32) are bounded, but also these
very terms. Since the coefficients converge uniformly simply by being constant in p and pointwise
convergent, and the terms converge uniformly to themselves since they have no dependence on n, we

have that (U (n, ¢, p,q)),cy converges uniformly to U (e,p,q). %

25 This is just a matter of repeatedly using exercise 2 in Rudin (1976, ch. 7).
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Proof of Proposition 6. i) Assume g = 0.5. By Proposition 4, (p;; (c,0.5)),,cy is an eventually

constant at 0.5 sequence. Therefore, lim,,_,o p}; (¢,q) = 0.5 = q.

ii) Assume g > 0.5, and let n > ng (¢). Let us first solve an auxiliary problem, that of maximizing

U (¢,p,q) for p € [g,1 — q|. It may be checked, just as in (34), that, for all p € (g, 1 — q),

0 - 1 m( .
gyl () = 25 (1) (1_p)3f( D)5
where
flepa): = @m()g—m(c)—2¢+1)p* + (4 —2m(c) g — 2m (c) ¢* — 1) p?
+(3m(c)g—3q+3m(c)¢®) p* + (¢ —m(c)g—3m(c)¢®) p+m(c) ¢
Since )
f(c,0.5,q) = (2¢—1)(m(c)+1) >0
and

fleq,9)=—¢(2¢—-1)(1 -9 <0,
by the Intermediate Value Theorem, there exists a root of f(c, -,q) in (0.5,q), which we shall call
P (¢, q)-

Inspired by the roles of Lemmas 9 and 10 in the proof of Proposition 4, let us split our analysis in

two.

On one hand, if m (¢) < 1, then we have 82U (¢, p, q) /Op* < 0,¥p € (g, 1 — ). In order to see this,
it is just a matter of applying the 92/0p? operator to each term in square brackets in (37) in turn.

The first one gives
7 ( me)
Op>? 2

This is negative because it is affine in m (c), it is equal to —2p < 0 when m (¢) = 0, and equal to

i = == i q(2p—2m(c)p+3m(c)q) ~ (2p — 3q) m(c) — 2p.

hSHES

_ (m(0))® <p—q>2> . 1m(o)

—3¢ < 0 when m (¢) = 1. Now the second one:

o (_m(c) 1-q  (m(e)’ (pq)2>

op? 2 1—p 4 (1-p)?
_1 m(c)4(1fq)(m(c)—2p+2m(c)p—3m(6)q+2)N(3C]*2p*1)m(c)+2p*2-
2(1-p)

Again, this is negative because it is affine in m (¢), it is equal to 2p — 2 < 0 when m (¢) = 0, and equal

to 3¢ — 3 < 0 when m (¢) = 1.
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On the other hand, if m (¢) > 1, then f (¢,p, q) is strictly decreasing in p for p € [, 1 — g]. In fact,
given any p € (q,1 — q), we have

A~

0 .
pl (e,pg) = (—3¢* —4p® — g+ 6pg® — 6p*q + 8p’q — 6p°q> + 6pq) m. (c)

+q + 12p*q — 8p’q — bpg — 3p” + 4p”,
once more an affine expression in m (c). At m (¢) = 1, this equals
=3 (=2p* = 2% + 20°¢° +p* +¢°) = =3 (p2 (1—q)+4¢*(1- p)2) <0.

As for the behavior of 8f (¢,p,q) /Op when m (¢) — 400, note that of (¢,p,q) /Op =g (p,q) m(c)+q+
12p2q—8p®q—6pg—3p®+4p>, where we have borrowed the g notation from the proof of Lemma 10. Since
we show there that g (p,q) < 0, we have lim,, ()10 of (¢,p,q) /Op = —o0, whence of (¢,p,q) /Op <
0,vp € (q,1-9).

Thus, in either case, p3, (¢, q) is the one and only solution to max,¢(z1—g] U (¢,p,q).

Finally, since U (n, ¢, p, q) converges uniformly to U (¢,p,q) for p € [q, 1 — q] and we have shown that
the argmax,c71-g U (¢,p, q) is a singleton ({p*, (¢,q)}), it follows from Theorem 2.2 of Schochetman
(1990) that lim, . pi (¢,q) = pi (c,q), which, as we have already shown, belongs to the (0.5,¢)

interval.

iii) Assume ¢ < 0.5. Then, by the argument above, 0.5 < lim, o p} (¢,1—¢q) < 1 —¢q. By
Claim 19, lim, oo p} (6,1 —¢q) = limy—oo (1 — % (¢,q)) = 1 — limp oo P} (¢, q). Therefore, 0.5 <
1 —limy, 00 P} (¢,q) < 1 —gq, or yet 0.5 > lim, 00 P (¢,q) > q, as wished. ®

Before tackling the proof of Proposition 7, we state a couple of lemmas more directly linked to

Probability Theory.

Proof of Lemma 6. By Levy’s Continuity Theorem, it suffices to show

that, for each ¢t € R, @yuipis( converges, as n — 00,

an’YB(nﬂcJ);(Cﬂq))7(1_q)’7R(nvcvp'tL(07Q))) (t)
to @Skellam((q/p;o(c,q))m(c)/Z,((lfq)/(lfp;o(c,q)))m(c)/Q) (t) In tUI'H, the characteristic fU,HCtiOIl Of

Skellam (mp, mg) is given by @sieiam(m,my) (£) = €xp (mp (e" —1) + mp (e7* —1)).20

Let n > mng(c), so that, by Lemmas 3 and 1, vg(n,c,p} (¢,q)) = ~v*(n,c)/(2p}, (¢,q)) and

26This can be verified in Skellam (1946), where the probability generating function of this distribution is
provided: G (t) = exp (mpt + mgt™" —mp —mpg). Then it is just a matter of Writing Yeyenam(m g mn) (1) =
G (e").
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Yr (n, ¢ P (c,q)) =" (n,¢) /(2(1 = p;, (¢,q))). For any ¢ € R, we thus have

(pMultiDiﬁl(nv(I’YB (n,c,p%(c,q)),(1—q)'yR(n,c,p;§(c,q))) (t)
= (1 + 97 B (na c, p;kz (Cv q)) (en - 1) + (1 - q) TR (’I’L, &) p:’(L (Ca Q)) (e_lt - 1))”
a 7o)y l—q Y (n0), )"
= 1+ e’ —1)+ e " -1
(g D T

*( ’) ’ 1- *( 7) —1
— 1+ pZ(qC#I) - an (€Zt B 1) - 1*2’2(%#1) - an (6 " - 1)
n

n

At the same time, note that

. ny* (nyc) oy l—q ny*(n,o), 4 >
lim e —1)+ e " —1
n—o0 <pz 2 ( ) 1—pj(cq) 2 ( )
qg m(c)

_ it 1—¢q m (c) —it
T pi(eq) 2 (e _1)+1—péo(c7fJ) y (1)

NG

by Proposition 6. Therefore,

nhrgo @MulmDn‘f(n,q'yB(n &% (¢,9)),(1—q)v g (n,e,p% (¢,9))) (t)
g m(c) i 1—q m(c), _u )
= e&xp| —F——F (" —-1)+ 1
<poo (07 Q) 2 ( ) 1-— poo (C q) 2 ( )
m(c — m(c t).
SOSkenam(P?;ot(zcyq) é)’17101&;((1641) #) ( )

Claim 21 A coin that lands heads up with probability s € [0,1] is tossed I > 1 times. Given any
ke {1,...,1}, the probability of obtaining at least k heads out of these l tosses is strictly increasing in

S.

Proof. Let Fj, denote the cumulative distribution function of Binomial ({,s). Then for any

ke {1,...,1}, the probability of obtaining at least k heads is

1—Fz,s(/<?—1)=/y 1y lkdy// L1 —y) T dy,
27 n

obviously strictly increasing in s.

Proof of Lemma 5. Given these hypotheses, Lemmas 3 and 1 are applicable. If the pollster

2TThe preceding formula is provided in Wadsworth and Bryan (1974, p. 51).
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is truthful and reports ¢, the distribution of (b,7,a) in (5) becomes

Multinomial (1, g5 (n,¢,q), (1 = @) Vg (7, ¢,q) , 1 = qv5 (n,¢,q) — (1 = q) vg (n,¢,q))
= Multinomial (n, 7 (ne) () ,1—~"(n, c)) ,

2 ’ 2
symmetric in (b, 7). Therefore, Pr (B wins | n, ¢, q,q) = Pr (R wins | n, ¢, q,q) = 0.5.

i) If ¢ = 0.5, then Proposition 4 gives p! (¢,q) = ¢. Therefore, as shown above,
Pr (B wins | n, ¢, p} (¢,q) ,q) = Pr (B wins | n,¢,q,q) = 0.5.

ii) If ¢ > 0.5, let us first argue that, conditional on the number of abstentions a,

Pr(b>r|n,c,pl(c,q),q,a) >Pr(b<r|n,cp}(cq),q a) (unless a = n, in which case both proba-

bilities vanish). In fact, given a € {0,...,n — 1}, b will be distributed as Binomial (n — a, s), where
. 7* (1)
. _ qvp (n, ¢, p;, (¢, q)) _ 92p3 (c0)
B * - * (o) v* (n,c)
7B (’I’L, C; Dn (Ca Q)) + (1 q) TR (n7 C; Dn (Cv Q)) q2p;(67q) + (1 — q) 201~ (c:0))
q
Py (c,9) 1 1
= = > == 0.5
q 1—q 14 ’
paled) T 1-p(cd) I+ —F—— b+l
pn(c,q)

where we first used Lemmas 3 and 1 to get rid of the v5 and vp terms, and then applied Proposition
4 to conclude that, since 0 < p} (¢,q) < ¢ <1,0< (1/¢—1)/(1/p} (¢,q) —1) < 1. Note that this
probability parameter of the distribution of b would be exactly 0.5 if pre-election poll results could
not be misreported:

qvg (n,c¢,q) a5 g;’c) 1

@vp (e + (-9 1r(Mcq) X094 (1-g)Fmd  1+1

0.5.

Since, conditional on a, the event b > r could also be written as b > |[(n —a) /2] + 1 (which
is at least 1), Claim 21 then yields that the probability of this event under misreporting is larger
that it would be under truthful reporting of pre-election poll results: Pr (b > r | n,c,p} (¢,q),q,a) >
Pr(b>r|n,cq,q,a).

Similarly, conditional on a, r ~ Binomial (n — a, 1 — s), where 1—s < 0.5, and the event b < r is the

same as 7 > [(n —a) /2] 41, so Claim 21 gives Pr (b < r | n,c,p} (¢,q) ,¢q,a) < Pr(b<r|n,cq,q,a).

Finally, note that Pr (b > r | n,¢,q,q,a) = Pr(b < r | n,c,q,q,a) (if we toss an unbiased coin n —a
times, the probability of obtaining more heads than tails equals the probability of obtaining more tails
than heads). Therefore, for all a € {0,...,n — 1},

Pr(b>r|n,c,p,(c,q),qa)>Pr(b>r]|n,cq,q,a)
= Pr(b<r|n,cq,q,a) >Pr(b<r|n,cp; (cq),q,a),
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while Pr (b >r | n,c,pj, (¢,q),q;n) = Pr(b<r|n,c,pj (c,q),q,n) = 0. By the Law of Iterated Ex-

pectations,

Pr(b>r|n,cp;,(c,q),q) =E(Pr(b>r|n,cp;,(cq),qa))
> E(Pr(b<r | nvcap;(QQ)a%a)) :Pl‘(b<7" | n,C,p;(C,Q),Q),

where expectations are taken with respect to the distribution of a (it is a marginal distribution of (5),
a ~ Binomial (n, 1 - ¢y5 (n, ¢,p;, (¢,9)) = (1 = @) v (n, ¢, 7, (¢, )
Thus,

Pr(b=r|n,cp}(c,q),q)

Pr (B wins | n,c,p;, (¢,q),q) =Pr(b>r|n,c,p;, (c,q),q) + 5

Pr(b=r|n,c0p}(c,q),q)
2

> Pr(b<r|ncp,(cq),q+ = Pr(R wins | n,c,p;, (¢,9), q)

= 1—Pr(B wins | n,c,p; (¢, q),q),

that is, Pr (B wins | n, ¢, p} (¢,q),q) > 0.5.

iii) If ¢ < 0.5, then the proof is entirely analogous, the difference being that now Proposition 4
implies s < 0.5, since 0 < g < p’ (¢,q) <1. m

Lemma 12 Given g € (0.5,1 — ] and p > 0, let Z, ~ Skellam ((¢/p) p, (1 — q) / (1 — p)) p), for all
p € (0.5,q]. Then Pr(Z, > 0)+ Pr(Z, =0) /2 is strictly decreasing in p.

Proof. Because Z, is the difference of two independent Poisson-distributed random variables, we

may write
i J
= L () o, (557)
St
(7> 0 =Y Y b i)
=1 j=0
and

Pr(Z,=0)=1-Pr(Z,>0)—Pr(Z,<0)=1-Pr(Z,>0)—Pr(-2,>0).

Let us call the first and second parameters of the Skellam distribution mp and mpg, respectively.

Now we shall analyze the partial derivatives of the above probabilities with respect to mp and mg.

8 oo 1—1 3 (mB)Z B mR oo 1—1 B -1 B (mR)J
—Pr(Z,>0 EgemB, e MR +EE ms e MR —
omp ( )= == i! == 1—1 J!

oo 4 i’ j
= —Pr(Z,>0)+> Y ™ (78?)? e~ ™R (Tr;ﬁz) =—Pr(Z,>0)+Pr(Z,>0)=Pr(Z,=0).
i'=0 j=0 : :



Since we can also write

o () o (1z2)’
_lu p — _‘1“ -p
Pr(Z, > 0) ;_16 e I-» 14—;_1 i ,

we have

Ompg

.

/—\

1

i1 (1=a, 7
+ Z e*aﬂie*ﬁ“ 3 =)
' — (7—1)!
‘]7
( J
° (gﬂ) 1—g 22 (gﬂ)
= —Pr(Z,>0)+ Ze*%ul’%efﬁu Z )

7!
i=1 =0

= —Pr(Z,>0)+Pr(Z,>2)=—-Pr(Z,=1).

By the symmetry property of the Skellam distribution (Z ~ Skellam (mp,mgr) < —Z ~

Skellam (mp, mp)), we have

iPr( Zy>0)=—-Pr(-Z,=1)=—-Pr(Z,=-1)

8mB
and 3
%Pr( Zy>0)=Pr(-2Z,=0)=Pr(Z,=0).
Therefore,
0 _ 0Pr(Z,>0)0mp 8Pr(Z > 0) Omp
dp Pr(Z,>0) = omp 8p ompg Op
1m 1 m
= Pr(Z,=0) <—2qu> -Pr(Z,=1) 5(1 —p)2 (1—-19q)
_ _m(4 )4 T4
= -3 <p2 Pr(Z,=0)+ 1 o) 5 Pr(Z, = 1))
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and

d _ 0Pr(Z,<0)0mp A OPr(Z, <0)0mpg
Jdp Pr(Z, <0) = ompg Jdp + ompg Op
1m 1 m
= —Pr(Z,=-1) <—2QQ> +Pr(Z, = 0)§W (1-q)
m ([ q l—gq

Now note that

1 1
Pr(Zp>0)—|—§Pr(Zp:O) = Pr(Zp>0)+§(1—Pr(Zp>0)—Pr(Zp<0))

_ %(1+Pr(Zp>0)—Pr(Zp<0)).

Thus,
d 1/0 0
—p Pr (Zp >0)+ = Pr(Z 0)>—2<8 Pr(Z, > 0) — 8pPr(ZP<O)>
_ _m qurZ—o) (1qPr( ))
3 (4 Pr(Z,= 1)+ L Pr(Z,=0))
_m ((q - I—q q
= — || =+ Pr(Z,=0)+ ——=Pr(Z,=1)+ 5Pr(Z,=-1) | <0.
- (p2 T ) Pz =0) ¢ L P, = 1)+ G Pe(Z =)
[ ]
Proof of Lemma 7. Since  Pr (B wins | n,c,p} (¢,q),q) =
Pr (b —r>0 | n, Cap;‘; (C, Q) 7Q) + Pr (b —r=0 ’ n,c,p,*l (C, Q)7q) /27 Lemma 6 yields
lim;, oo Pr (B wins | n, ¢, p (¢,q) ,q) = Pr(Z>0) + Pr(Z=0)/2, where Z ~

Skellam ((¢/p% (¢,q)) m(c) /2, (1 —q) / (1 —pi (¢,q))) m(c) /2).  Thus, at least the existence

of the limit is assured. Let us see how it compares to 0.5.

i) If ¢ = 0.5, then the thesis follows directly from Lemma 5, since Pr (B wins | n, ¢, p (¢,q) ,q) =
0.5,Vn > ng (c). Alternatively (and this second argument will be useful below), it could also be seen to
follow from the fact above, since in this case, by Lemma 6, p’_ (¢, q) = ¢, and Z will be distributed as
the symmetric Skellam (m (c) /2,m (¢) /2), so that Pr(Z >0) +Pr(Z=0)/2 = 1—-Pr(Z<0) —
Pr(Z=0)/2 = 1 —-Pr(Z>0) — Pr(Z=0)/2. Thus, lim, .. Pr(B wins|n,c,p} (c,q),q) =
Pr(Z>0)+Pr(Z=0)/2=0.5.

ii) If ¢ > 0.5, then, by Lemma 6, p’ (¢,q) € (0.5,q). Therefore, by Lemma 12,
Pr(Z >0) + Pr(Z =0)/2 will be strictly larger than Pr(Z, > 0) + Pr(Z, =0) /2, where Z, ~
Skellam ((¢/q) m (c) /2,((1 —q) / (1 — q)) m(c) /2) = Skellam (m (c) /2,m (c) /2). As explained in part
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(i), Pr(Z, > 0) + Pr(Z, =0) /2 = 0.5, so that lim,_,o Pr (B wins | n,¢,p}, (¢,q) ,q) = Pr(Z > 0) +
Pr(Z =0) /2> Pr(Z, > 0) + Pr(Z, = 0) /2 = 0.5.

iii) If ¢ < 0.5, then Pr (B wins | n,c,p} (¢,q),q) = Pr(R wins |n,c,1 —p} (¢,q),1 —q) = 1 —
Pr (B wins | n,c,pk (¢,1 —q),1 — q), where we have used Claim 19. Since 1 — ¢ > 0.5, part (ii) yields
lim,, oo Pr (B wins | n, ¢, pk (¢,q) ,q) = 1 — lim,,_ Pr (B wins | n,¢,pl (¢,1—¢q),1—¢q¢) <1—-0.5 =
05. m

Proof of Proposition 7. i) Fix any n > ng (c), so that, by (18), Lemmas 3 and 1,

C(n’07Q7q)_C(nvcapn( Q)7Q)
o 7" (n, ) 7 (n, ) 7 (n, )
- ”C(q 2q D500 ))‘"c<2 " (c.0) (1‘Q)2<1—pz<c,q»)

= ney* (n, )<1_1<*(qc’) 1—1p;qCQ>

~ 2p;(c,q) (1 =y, (c,q) — (1 —py, (¢,9) ¢+ py (¢, q) (1 — q))
= (2p, (c;q) = 1) (¢ —py (¢, q))-

If ¢ 2 0.5, then p} (c,q) 2 0.5 and p};, (¢, q) < ¢ due to Proposition 4. In either case, 2p} (c,q) — 1 and
q — p;, (¢, q) have the same sign, so that C (n,c,q,q) —C (n,¢,p}, (¢,q),q) is indeed positive.

i) Let J(e,pq) = (2¢—1)2Pr(Z,,>0)+Pr(Z,,=0)—1), where Z,, ~
Skellam ((¢/p)m (¢) /2,((1 —¢q) /(1 —p))m(c)/2). As done in the proof of Lemma 7, note
that (17) and Lemma 6 yield

I k
lim (n,¢,p5 (¢,0) ) =(2q-1) (2 lim Pr (B wins | n,c,p} (¢,q),q) — 1)
n—aoo n n— oo

= (20-1) 2(Pr(Zpy, (capq > 0) + Pr (Zpg (cq)g = 0) /2) = 1) = J (e,;p% (¢, 0) 1 0) -

This implies that also lim, . (Z (n,¢,p} (¢, q),q) /n) = J (e, pi (¢,9),q). In
fact, a simple variation of the argument given in section 5 would show that
limy, 00 ((Z (n,¢,p} (¢, q) ,q) — I (n,e,p (¢,q),q)) /n) = 0 (just vredefine x,,, as
Pr (B wins | n,¢,p} (¢,q) ,q,np) and y, as Pr(B wins | n,c,p) (¢,q),q)). Then, given ¢ > 0,
it is only a matter of choosing n; € N large enough so that n > mn; implies both
[(Z(n,¢,p5, (¢, q),9) = I (n,¢,p7, (¢,9) ,q)) /n| < e/2 and | (n, ¢, p;, (¢, q) . q) /n = J (¢, p5 (¢,q) )] <
£/2, and then applying the triangle inequality.

Since I (n,c,q,q) = (2¢—1)(2Pr(B wins | n,c,q,q) —1) = 0 for all n > ng(c) by Lemma
5, we have lim,_ (I (n,¢,q,q)/n) = 0 and lim, .o (Z(n,¢,q,q9)/n) = 0 (take zp,, as
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Pr (B wins | n,¢,q,q,np) and y, as Pr (B wins | n, ¢, ¢q,q)). Because

J(e,q,9) = (2¢ —1) (2Pr (Zgq > 0) + Pr(Zg,q = 0) — 1)
= (2= 1) (Pr(Zyg > 0) + Pr(Zyy < 0) 4+ Pr(Zyg=0)—1) = (2g—1)(1—1) =0

by the symmetry of Skellam (m (c)/2,m(c)/2), we can also write lim, . (Z (n,c,q,q)/n) =
J (¢4, q)-

Therefore,

lim s (nv c7p’>:l, (Ca Q) ; q) -7 (n7 ¢ q, q)

n—00 n

=J(e,p (¢,q),q) — J (¢,q,q) -

If ¢ > 0.5, then p%_ (¢, q) € (0.5,q) by Proposition 6, so that

J (¢, 0% (¢,q) ,q) — J (¢, q,q)

Pr (Zpsyc.a)a = 0 Pr(Zgq =0
= 2(2¢-1) (Pr(zp;o(cyq>7q>0)+ " (Zi e )—<Pr(Zq,q>0)+r(q’q)>>>07

2 2

by Lemma 12.
In order to see that this same inequality will hold for the ¢ < 0.5 case, first note that J (¢,p,q) =
J(e,1—=p,1—q). In fact,

J(1-p1—q)=(2(0-q)—1)2Pr(Z1p1-¢>0)+Pr(Z1p1=0)—-1),

where  Z1_p1-4 ~ Skellam (((1 —¢q) / (1 —p))m(c) /2, (q/p) m(c) /2). By the
symmetry property of the Skellam distribution, we then have —Z1_,14 ~

Skellam ((¢/p) m (c) /2,((1 —q) / (1 — p)) m(c) /2), the exact same distribution of Z, ,. Thus,

J(e,1=p,1—q) = (1-2¢)(2Pr(=Z1-p1-¢<0)+Pr(-Z1p1-4=0)—1)
= (1-29)(2Pr(Zpq <0) +Pr (2, =0)—-1)
= (1-2¢) (21 =Pr(Zpq>0)—Pr(Zpg=0))+Pr(Z,,=0)—-1)
= (1-2¢)(=2Pr(Zpg>0) —Pr(Zp=0)+1)
= (20— 1) 2P (Zyg > 0)+ Pr (Zpg = 0)— 1) = J (e,,0)

Having noted this, since 1 — p%_ (¢, q) = p%, (¢,1 — ¢) by Claim 19, we once more have

J(e,p5 (c,q) ,q) — T (¢,q,q) = J (¢, p5 (¢,q) ,q) = J (¢, 1 —p5. (¢,q), 1 —q)
= ‘](C’p::o(cvl_q)’l_q):‘]<C7p>;o(cal_Q)71_Q)_J(cal_Q71_Q)>O7
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since 1 — g > 0.5.

Thus, in either case, we have lim, . ((Z (n,c,p} (¢,q),q) —Z (n,c,q,q)) /n) > 0, so that
T (n,c,pl(c,q),q) >Z(n,c,q,q) for sufficiently large n.

iii) It follows immediately from parts (i) and (ii) that, for sufficiently large n, W (n, ¢, p}, (¢, q) ,q) >
Win,c,q,q). =

Proof of Proposition 8. i) Note from (18) and Lemmas 3 and 1 that, for all n > ng (¢),

C(n,c,q,q) nV*(;’C)c + nw*(;“’c)c

- = - =~"(n,c)ec

Hence, Lemma 2 yields lim,,—,« (C (n,¢,q,q) /n) = 0.

Since C (n,c,pf (¢,q),q) < C(n,c,q,q) for sufficiently large n (Proposition 7) and
C (n,c,pk (¢,q),q) > 0, the Squeeze Theorem gives lim,,_,« (C (n,¢,p} (¢,q),q) /n) = 0 too.

ii) It was already shown in the proof of part (ii) of Proposition 7 that, both for the ¢ > 0.5
and the ¢ < 0.5 cases, lim (Z (n,c,p}(c,q),q)/n) = J(e,pi(¢,q),q) > 0 = J(c,q,q) =
n—oo
lim (Z (n,c,q,q) /n).
n—oo

iii) This follows immediately from parts (i) and (ii). =
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