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1 Introduction

The influence of climate on people’s lives is undeniable. Because we expect considerable

changes in climate and temperature increases that differ across space, it is reasonable to

conjecture that these changes will spur migration and reshape the spatial distribution of

people and economic activity. Our goal in this paper is to quantify these phenomena.

Specifically, we turn to the case of Brazil to conduct our study. The country’s conti-

nental dimensions and climate diversity imply that its regions will experience different

temperature rises, a point illustrated in Figure 1.1 Also, the Brazilian population censuses

provide detailed data on migration flows at a fine geographic level. Brazil, therefore, of-

fers an ideal setting to study the impact of climate change on internal migration patterns.2

Moreover, because a large share of the country’s labor force is employed in agriculture,

we examine the impact of climate change on migration through its effect on agricultural

income.3

For our quantitative exercise we propose a spatial equilibrium framework in which

discrete-choice techniques are used to model workers’ locational choices (Timmins (2007),

Morten and Oliveira (2016)). The utility from living in a given location is a function of lo-

cal attributes—wages, rental prices, climate, and non-climate amenities—and an idiosyn-

cratic taste parameter.4 Importantly, our model departs from Timmins (2007) and dis-

tinguishes two channels through which climate may impact locational choice: the usual

amenity-value channel and the novel indirect channel via agriculture wages.5 The dis-

tinction is possible because our workers choose location and employment sector—either

in agriculture or in non-agriculture. We postulate that agriculture productivity—and

therefore agriculture wages—is a function of climate.6 We also assume that each migrant

1According to the predictions generated by the Hadley CM3 global circulation model for a high-
emissions scenario, summer temperatures increase nearly 3 degrees Celsius on average and the interquartile
range of these temperature changes is 3.6 degrees. We give more details on the predictions in Section 3.

2Other large developing countries like India and China do not possess detailed migration data from the
population census. These countries also have unique barriers to internal migration that Brazil do not have,
such as language and cultural diversity and, in the Chinese case, the hukou system that curtails rural to
urban migration.

3Population census data reveal that about 23% of the country’s labor force was employed in agriculture
in 2010; in some locations this share was as high as 50%. See Appendix Figure 1.

4Discrete-choice models inspired by McFadden (1973) have been recently used to compute the value of
local amenities. See Timmins (2007) for temperature and rainfall, Bayer et al. (2009) for clean air, Klaiber
and Phaneuf (2010) for open space, Sinha et al. (2018) for temperature, and Diamond (2016) for endogenous
amenities that depend on city skill mix.

5Agronomic models predict a large degree of spatial variation in changes in potential crop yields as a
result of climate change. More details in Section 3.

6Because the relationship between climate and agriculture yields is complex, we choose not to param-
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worker pays a relocation cost which depends on the distance between origin and desti-

nation.7 Workers’ locational choice determines the demand for housing and the supply

of labor at each location; local housing prices and wages in each sector are set by supply-

and-demand. As workers migrate in response to the new climate conditions, wages and

rents adjust which, in turn, further alter locational choices. Our analysis, therefore, ac-

counts for general equilibrium effects of population re-sorting.

We estimate the parameters of the spatial equilibrium model using a two-step estima-

tion procedure (Berry et al. (2004); Timmins (2007)). In the first step we employ rich bilat-

eral migration flow data drawn from the 1980 to 2010 decennial population censuses to

estimate the location-sector specific component of workers’ indirect utility and the migra-

tion cost parameters. We assume that migration costs have a fixed component, capturing

a general dislike of moving, and another component which depends on two factors: the

geographic distance and the difference in temperatures between the worker’s origin and

a potential destination. Consistent with previous studies, the first-step estimates reveal

that migration costs are significant. We also find that workers choose their locations based

on differences in temperature between origin and possible destinations.

In the second step, we use the indirect utilities estimated in the first step, along with

data on wages, rents, and climate (temperature, rainfall, and sunshine hours), to estimate

the marginal utilities of income and climate amenities and the parameters in the equa-

tions that characterize the equilibrium in the labor and housing markets. We instrument

changes in wages and labor force with measures of local labor demand shocks (Bartik

(1991)) and labor market access derived from the model (Morten and Oliveira (2016)).

Our estimates of the marginal utility of climate amenities indicate that Brazilians place a

higher value on warmer winters than they place on cooler summers—a 31% difference.

We use our estimates to answer questions regarding the impact of warmer tempera-

tures on (i) internal migration and, consequently, the spatial distribution of the workforce;

(ii) the share of employment in agriculture; (iii) and the regional distribution of welfare.

To carry out the simulations, we use information on future agriculture productivity from

eterize it. Instead, we rely on grid-level data from the Global Agro-Ecological Zones (GAEZ) to obtain
estimates of potential crop yields under current and future climate.

7Bayer et al. (2009) have shown that the presence of migration costs biases the estimates of the prefer-
ences for amenities when these costs are not accounted for. Timmins (2007) have shown that costly adapta-
tion to climate change is relevant when evaluating the welfare effects of climate change. Cropper and Sinha
(2013) also find relevant moving costs for the US. These studies model migration costs as depending on the
distance between the migrant’s state of birth and the new location. Morten and Oliveira (2016) show that
migration costs that depend on the travel time between origin and destination are important determinants
of workers’ choice of location in Brazil. We follow their approach when modeling migration costs.
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the Global Agro-Ecological Zones dataset (GAEZ) and temperature forecasts produced

by the National Institute for Space Research (INPE).8 The agriculture data are available

under current and future climate conditions so we can use the predicted change in yields

to estimate how climate change will affect agriculture wages.

We feed data on average temperatures and attainable agriculture yields into our spa-

tial equilibrium model to simulate the bilateral migration probabilities—and sector choice—

and, in turn, the population distribution under future climate scenarios. We then calculate

the changes in internal migration flows and regional welfare relative to those prevailing

under the current climate. We carry out this exercise under three experiments: (i) consid-

ering that climate impacts only the amenity value of locations, (ii) assuming that climate

only affects agriculture productivity, and (iii) assessing both channels. We run the simu-

lations under two scenarios: a high-emissions scenario and a low-emissions scenario.

Under the third experiment, the high-emissions scenario yields an aggregate migra-

tion rate 5.79% higher than the migration rate under the current climate. Under the first

experiment the increase in migration rate is 50% smaller, which highlights the need to

account for changes in the agriculture sector wages. The share of employment in agri-

culture is also affected by climate change: it is 20% lower under future climate, an effect

spurred mainly by the losses in agriculture yields.

Turning to the internal migration flow pattern among Brazil’s macro-regions, and still

considering the high-emissions scenario, we find that nearly half a million more people

migrate inter-regionally. Furthermore, climate change will likely deepen regional inequal-

ities. The Northeast—the poorest region—is the biggest loser. The region loses about 1.5%

of its population to other regions, mostly due to an increase in out-migration to the South-

east; there, expected utility falls. The North and South also lose population and welfare

but in smaller magnitudes. The Southeast—the richest and most industrialized region—

and the Midwest—the country’s new agriculture frontier—are the winners. These regions

gain 1.4% and 1.2% of their population, respectively; the gain is attributed mostly to an

increase in in-migration. They also experience increases in expected utility. These gains

might be explained by the fact that several locations that comprise these two regions ex-

perience gains in agriculture yields under the new climate, and that winter temperatures

rise more than summer temperatures.9

8Crop potential yields from the GAEZ dataset are generated using agronomic models and high-
resolution data on climatic and soil conditions. The estimates are available for 255,680 grids covering the
Brazilian territory (around 8.5 million square km) regardless of whether the place produces the crop. More
details in Section 3.

9Previous research finds that climate change leads to regional differences in welfare (Cropper and Sinha
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The role of migration as a strategy to cope with climate change has been examined

in Findley (1994), Barrios et al. (2006), Saldaña-Zorrilla and Sandberg (2009), Drabo and

Mbaye (2011), Marchiori and Schumacher (2011), and Marchiori et al. (2012). Most of

these studies, however, focus on partial equilibrium modeling. Our analysis, on the other

hand, highlights the importance of general equilibrium effects: ignoring these leads to

overestimation of the overall impact of climate change on internal migration.10 Addition-

ally, a large fraction of the literature focus on extreme events such as earthquakes, torna-

does, hurricanes, floods, and droughts, as opposed to long-term climate change, and do

not consider permanent, or lifetime, migration.11As noted by Baez et al. (2017), people

affected by natural disasters normally receive social assistance, usually not available to

people affected by long-term changes in climate.

Our paper also relates to another three strands of literature. First, a literature con-

cerned with the estimation of spatial equilibrium models to understand the connection

between population sorting and a wide variety of economic phenomena.12 Second, the

literature measuring the willingness to pay for climate amenities in developed (Blomquist

et al. (1988), Cragg and Kahn (1997), Maddison and Bigano (2003), Rehdanz and Maddi-

son (2009), Cropper and Sinha (2013), and Albouy et al. (2016)) and developing countries

(Maddison (2003), Mueller (2005), and Timmins (2007)). Finally, the literature that studies

the adaptation strategies to climate change.13

This paper is organized as follows. The next section lays out the spatial equilibrium

(2013)) and international migration (Marchiori and Schumacher (2011)); the disparities are mainly driven
by low income regions being more vulnerable to climate change and low income individuals having capital
constraints to pay for moving costs (Baez et al. (2017); Drabo and Mbaye (2011)).

10Partridge et al. (2017) criticize the lack of theoretical models to evaluate the relationship between climate
and migration and advocate in favor of spatial equilibrium models to assess such impacts.

11Baez et al. (2017) studies the effect of heat exposure on migration in Central America countries. Saldaña-
Zorrilla and Sandberg (2009) finds evidence that climate-related disasters affect migration in Mexican mu-
nicipalities. Gray and Mueller (2012) and Martin et al. (2014) analyze flooding effects in Bangladesh. Find-
ley (1994) examines the relationship between droughts and migration in Mali. Marchiori et al. (2012) as-
sesses the impact of weather anomalies on migration in Africa. Hornbeck (2012) finds evidence of large
population declines from the American Dust Bowl in the 1930s.

12See Bayer et al. (2007) for a framework to estimate preferences for schools in U.S. neighborhoods; Al-
bouy (2009) for a study of the effects of taxation on employment and wages; Diamond (2016) for a model of
endogenous production of amenities that explains the college gap in the U.S.; Morten and Oliveira (2016)
for the welfare effects of increased labor market connectivity through road networks; Mangum (2015) for a
dynamic spatial equilibrium model with barriers to labor adjustment to local labor demand shocks.

13See Seo and Mendelsohn (2008) and Seo et al. (2010) for how farmers in Africa adjust their choices of
livestock species in face of changes in climate; Hornbeck (2012) for a study of the economic adjustments in
the early 20th century America to a large environmental shock; Taraz (2017) for a study of Indian farmers’
coping strategies using irrigation investments and crop adaptation; da Cunha et al. (2014) for the role of
irrigation in allowing Brazilian farms to avoid some of the adverse effects of climate change.
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model we employ in our quantitative analysis. Section 3 describes the datasets we utilize

to measure economic variables, as well as the building of historical climate data. Section 4

outlines the estimation strategy and presents the estimates of structural parameters. Sec-

tion 5 presents our simulations of the effects of climate change on migration and welfare.

Section 6 concludes.

2 The Model

Our analysis begins with the setup of a spatial equilibrium model. The model features

workers choosing the location in which to live and the sector of employment after com-

paring the wages, housing prices, and the amenities that locations provide to their resi-

dents. The workers’ choice is also guided by idiosyncratic tastes for location and sector—

assumed i.i.d across workers, location, and sector—and by a bilateral migration cost pa-

rameter. The climate plays a role in this decision through two channels: (i) the amenity

value of locations and (ii) the wages enjoyed by workers who choose the agriculture sec-

tor. Next, we lay out the details of the model.

2.1 The locational choice

Consider a country with J locations, and let j index the origin and k the destination. Each

location offers employment in two sectors, agriculture and non-agriculture, indexed by

s = a, m. At time t, individuals living in location k and working in sector s consume a bun-

dle of nationally produced agriculture and non-agriculture goods, Bkst, and locally pro-

duced housing, Hkst; they cost pt and rkt, respectively.14 They also enjoy location ameni-

ties, climate, Ckt, and non-climate, Akt, and sector-of-employment amenities, Sst. Prefer-

ences over consumption goods and housing are the Cobb-Douglas type, which yield the

14Assuming that agriculture goods are produced nationally implies that their prices do not vary across
locations. Thus, any effect that climate change has on prices does not affect locational choice. One obvious
concern is that trade costs are substantial enough to invalidate this assumption so that food prices are
higher in locations that face higher trade costs. We argue that for the time horizon over which we perform
the climate-change simulations it is likely that local markets will be well integrated so that these costs would
be of second-order importance.
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following (log) indirect utility function15

vkst = vt + log wkst − λr log rkt + λcCkt + λA Akt + λsSst.16

An individual who starts in location j and moves to k in period t pays a migration

cost, µjk, which depends on the following components

µjk = µ f1{j 6= k}+ µdDjk + µcCjk,

where 1{j 6= k} indicates if the destination is different from the origin, and captures

a fixed utility cost of migrating; Djk is a vector of pairwise distance bins, and captures

a component associated with the travel time; Cjk is a vector that measures the “climate

distance” between j and k, and reflects the like or dislike to live somewhere where the

climate is different from that of the current location.

Finally, before choosing a location and a sector, an individual draws a J × 2 vector of

i.i.d. idiosyncratic taste shocks. Assuming taste shocks are εnkst ∼ Type I Extreme Value,

with variance σ2, the utility that individual n who starts in location j derives from living

in location k and working in sector s in period t is

vnjkst =
vt

σ
+

1
σ

log wkst −
λr

σ
log rkt +

λc

σ
Ckt +

λA

σ
Akt +

λs

σ
Sst −

µjk

σ
+ εnkst (1)

and the likelihood that an agent migrates from j to k to work in sector s in period t is

πjkst = Pr(vnjkst ≥ vnjlqt ∀l 6= k, ∀q 6= s)

=
exp( vkst

σ −
µjk
σ )

∑q∈{a,m} ∑J
l=1 exp(

vlqt
σ −

µjl
σ )

. (2)

15Individuals solve

max
Bkst ,Hkst

(Bkst)
1−λr (Hkst)

λr exp(λcCkt) exp(λA Akt) exp(λsSkt)

s.t. ptBkst + rktHkst ≤ wkst,

which results in the indirect utility function

Vkst =

(
(1− λr)

wkst
pt

)1−λr (
λr

wkst
rkt

)λr

exp(λcCkt) exp(λA Akt) exp(λsSkt).

16where vt = λr log λr + (1− λr) log(1− λr)− (1− λr) log pt.
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Given the initial distribution of the population, N0
j , the supply of labor at location k

and sector s in period t is

Lkst =
J

∑
j=1

N0
j πjkst. (3)

From our data we observe the share of people who migrated between origin-destination

pairs of locations by sector of employment (πjkst) and the bilateral migration cost compo-

nents (1{j 6= k}, Djk, and Cjk). We estimate the destination-sector-specific component of

the indirect utility ( vkst
σ ) and the cost function parameters, divided by the standard devia-

tion of the idiosyncratic taste shock (
µ f
σ , µd

σ , and µc
σ ).

2.2 The determination of prices

The supply of labor at local labor markets is determined by the individuals’ locational

choice. We now propose a simple characterization of the labor demand. We assume

that in each period the many homogenous firms in location k, sector s produce a final

tradable good using only labor as input. Production takes place according to the function

Ykst = TkstL
αs
kst, where Lkst is labor, Tkst is productivity, and αs measures the returns to

labor inputs in each sector.17 We further assume that

Tkst = Tkt exp(gs(Ckt) + νkst),

where Tkt captures the location-wide determinants of productivity, and gs(Ckt) maps the

impact of the climate; νkst picks up other location- and sector- specific shocks. The as-

sumption that labor markets are competitive yields

log wkst = c + log Tkt + gs(Ckt) + γs log Lkst + νkst, (4)

where c = log(αs), and γs = −(1− αs). In Equation 4, we assume that climate only has

a direct impact on productivity in the agriculture sector so that gm(.) = 0. We do not

parameterize the function ga(.) but instead rely on agronomic models to predict the effect

of climate on agriculture yields.18

17We assume that land is a fixed factor of production and, as such, its omission does not interfere with
the estimates of our main parameters because we take the first difference of the variables. Besides, for the
simulations we employ potential agriculture yield data from agronomic models which account for a variety
of soil conditions.

18See a detailed discussion in Section 3.3.
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The equilibrium in the housing market determines the price of housing units. Fol-

lowing Diamond (2016), each location has a well-developed housing market. Developers

produce housing units using construction materials and land. Assuming developers are

price takers and housing units are homogeneous, the price of housing units is set equal to

the marginal cost. In the asset market equilibrium, prices are set equal to the discounted

value of rents, yielding rkt = itMCkt, where it is the interest rate. We assume further that

housing is owned by absentee landlords who rent the houses to local residents. Develop-

ers’ marginal costs depend on the cost of land; the cost of land, in turn, is a function of

the aggregate housing demand. Thus, the equation that characterizes the equilibrium in

the housing market is

log rkt = log it + η log( ∑
s∈{a,m}

wkstLkst) + ζkt, (5)

where η is the housing supply elasticity, and ζkt is the idiosyncratic component of housing

prices. In Equation 5, we observe local rental prices (rkt), wages (wkst) and labor (Lkst) by

sector. We estimate the housing supply elasticity parameter (η).

2.3 The climate and the spatial equilibrium

Given the initial distribution of the population, N0
j , the spatial equilibrium is defined by

bilateral migration probabilities (π∗jkst), wages (w∗kst), and rents (r∗kt) that satisfy Equations

3, 4, and 5. In equilibrium, the marginal mover is indifferent between staying in their

current location or moving; also, the labor and housing markets clear. A change in climate

that impacts locations differently and, in turn, alters relative location amenity values and

agriculture wages, induces more people to move and reshapes the spatial and sectoral

distribution of the labor force. As people re-locate, local wages and housing prices adjust,

further impacting locational choice. A new equilibrium is reached when no one has an

incentive to migrate.

3 Data

3.1 Wages and rents

To calculate wages, rents, labor, and migration flows and estimate the key parameters in

Equations 1, 4, and 5, we use micro data from decennial population censuses spanning the
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1980–2010 period. The finest level of geography is the municipality. The municipalities

are grouped into meso-regions.19

Workers aged 25 to 75 constitute the sample we use to calculate regional averages.

The wage is the monthly labor income divided by total monthly hours of work, both in

the main occupation; the rental price is the monthly amount paid in rents divided by the

number of rooms. We convert nominal wages and rents to 2010 BRL (Brazilian Reais),

and then use the average exchange rate in 2010 to convert them to 2010 US$.20

A feature of Brazil’s population census that is crucial to our study is the availability of

data on each worker’s municipality of residence five years prior to the census year. This

feature enables us to employ five-year bilateral migration flow data to estimate migration

costs and predict bilateral migration probabilities under future climate scenarios. Finally,

data on workers’ sector of employment allow us to model the choice between agriculture

and non-agriculture jobs.21

3.2 Weather and climate

To estimate the marginal utility of climate amenities in Equation 1, we employ 10-year

averages of the climate variables (mid-run climate); the averages are taken over the census

year and nine years prior to the census, so that we end up with averages covering the

1971–1980, 1982–1991, 1991–2000, and 2001–2010 periods.22 The mid-run climate data

reflects the average exposure of workers to the climate in each meso-region. We use 10-

year averages instead of 30-year averages (long-run climate) because: (i) our estimation

strategy relies on temporal variation in climate conditions; (ii) 10-year averages mitigate

the influence of ENSO cycles23; and (iii) we want to explore the average exposure of

individuals to climate before their potential moving (moving is observed from 1-5 years

19The Brazilian Bureau of Statistics (IBGE) groups municipalities into meso-regions, which
are homogeneous areas with shared cultural history, natural resources, and connectivity. See
http://ibge.gov.br/english/ for details.

20The 2000 Census did not collect data on rentals. To fill this gap, we use rental prices data from the 1999
Brazilian Household Survey (PNAD). The survey is statistically representative for Brazil and, importantly,
allows us to identify the households’ municipality of residence. We calculate the weighted average rental
prices for a meso-region using the households’ survey sample weights.

21See Appendix Table 1 for summary statistics.
22Dell et al. (2012), for example, use 15-year mean climate to assess longer term effects of climate on GDP

growth; Dell et al. (2014) recommend using decadal data instead of annual shocks when employing panel
data techniques.

23The 10-year span mitigates the influence of El Niño-Southern Oscillation (ENSO) cycle on the averages.
The ENSO cycle is a scientific term for fluctuations in air temperatures in the east-central Equatorial Pacific.
It has two opposite phases: El Niño (higher temperatures) and La Niña (lower temperatures). El Niño and
La Niña typically occur every two to seven years.
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prior the census years).

We calculate the mid-run averages from historical daily weather station data on tem-

peratures, rainfall, and sunshine hours collected by the Brazilian Institute of Meteorol-

ogy.24We construct summer (Dec–Feb) and winter (Jun–Aug) averages for each meso-

region.25Appendix Figures 2-7 show the spatial variation in the climate variables over

time. Appendix Figures 8-13 present the temporal variation: the first difference of the

mid-run climate data. From the Figures, we observe temporal variability within the meso-

regions. For summer temperatures, the 1980’s seemed to be much warmer than the pre-

vious and following decades. This behavior is less observed during winter and for the

other variables considered (rainfall and sunshine).

To simulate the impact of changes in average temperatures on the spatial equilibrium

we require data on current, or baseline, and future climate conditions.26 Our baseline

climate corresponds to 30-year average summer and winter temperatures constructed

from the daily weather station data spanning the 1961–1990 period.27 Data on future

climate conditions are sourced from the National Institute for Space Research (INPE).

The INPE calculates regional climate change over South America by downscaling Global

Climate Models (GCM). Regional models are more suitable for studying local impacts of

climate change.28

INPE predictions rely on scenarios generated by the IPCC’s 5th Assessment Report.

We consider two scenarios: the pessimistic scenario, referred to as A2, and the optimistic

scenario, B1. The A2 scenario describes a high population growth scenario (15 billion by

2100), slower technological change, and high carbon emissions; the B1 scenario assumes

a low increase in population that peaks by 2050 and declines thereafter, the introduction

of clean technologies, and carbon emissions equivalent to 65% of the total emissions in

A2 scenario.29 Figure 1 displays the spatial distribution of temperature changes under

24Brazil has a network of weather stations with good coverage in the country’s coast but low density in
the interior, particularly the North and Midwest. The institute collects weather station data since January
of 1961.

25We apply a kriging interpolation technique to calculate meso-region data (using the meso-region cen-
troids) from weather station coordinates. See Appendix A.2 for a detailed discussion about the kriging
technique.

26We do not assess changes in rainfall and sunshine hours for two reasons. First, data on future sunshine
hours are not available. Second, the climate-change data on rainfall are volatile and very sensitive to the
choice of GMCs and scenarios, so we decided not to incorporate those into our simulations.

27The maps with the spatial distribution of the 30-year averages are available upon request.
28See Appendix A.3 for details on the Regional Climate Models (RCMs) and GCMs.
29We overlay the gridded dataset on a map of meso-region polygons and calculate the average of the grid

values, weighted by the grid area within the meso-region polygon.
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A2 and B1 scenarios relative to the baseline climate. The figure reveals that temperatures

are expected to increase in most of the country, especially in the Midwest. We do see,

however, that there is considerable spatial variation in how much summer and winter

temperatures are predicted to rise.

3.3 Agriculture yields

To model the complex relationship between climate and agricultural productivity, repre-

sented by the function ga(.) in Equation 4, we source grid-level data on agriculture yields

from the Global Agro-ecological Zones (GAEZ) project, developed by the International

Institute for Applied System Analysis (IIASA) and the UN’s Food and Agriculture Orga-

nization (FAO). The GAEZ project draws on state-of-the-art agronomic models to calcu-

late daily potential crop yields from high-resolution data on climatic and soil conditions

under a set of assumptions about input use such as water, labor, and farm management.30

The data are available for 10kmX10km grid cells covering the Earth’s land surface.31

From the GAEZ project we obtain attainable crop yield data for the baseline climate

(1961–1990) and future climate (2041–2070). Future climate predictions are available for

several combinations of emission scenarios and GCMs. In our simulations, we adopt

the predictions generated by the Hadley Centre Coupled Model version 3 (HadCM3) for

scenarios A2 and B1.32

We harness data on potential yield for 11 crops for each of the 255,680 grids—nearly

3.3 million square miles—covering the Brazilian territory. The selected crops are soybean,

maize, sugarcane, wheat, citrus fruits, cassava, banana, coffee, rice, beans, and tobacco,

which constituted on average 96.7% of total agricultural production and 91.8% of total

crop area in 2010 (Agriculture Surveys, PAM-IBGE). We average the grid-cell data to cal-

culate meso-region crop yield in US$/ha.33

30The attainable crop yield estimate we source from the GAEZ dataset is computed under the assumption
of rain-fed water supply and an intermediate-level use of inputs. Intermediate-level input use means the
farming system is partially market oriented, production relies on some mechanization and is moderately
labor intensive. Rain-fed assessments assume the use of conventional tillage systems.

31Appendix A.4 details the geo-referenced inputs and features employed in crop yield predictions.
32HadCM3 is a global model developed in 1999 and it draws on the IPCC’s 3rd and 4th (AR4) Assessment

Reports. (See Appendix A.4 for more information on alternative models and scenarios from GAEZ dataset.)
It is worth mentioning that the temperature predictions we use to evaluate climate amenities described in
the previous section draws on the 5th Assessment Report (AR5) instead. The average temperature predic-
tions from the AR5, however, are compatible with the crop yields prediction from the GAEZ.

33Here also we overlay the gridded dataset on a map of meso-region polygons. If a polygon overlaps
multiple grids, we calculate the average of the grid values, weighted by the grid area within the meso-
region polygon. We use FAOSTAT average producer price per crop in US$/ton to convert yields from
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We then aggregate the value of potential crop yield to create a single measure of meso-

region agriculture yields for the baseline climate and future climate under A2 and B1

scenarios according to

yieldsk =
11

∑
c=1

fckyieldsck, (6)

where k is the meso-region, c is the crop, and fck the fraction of crop c in total crop area.34

Figure 2 shows the spatial distribution of the agriculture yields changes for the A2

and B1 scenarios relative to the baseline climate.35 The most adversely affected areas are

located in the North and Northeast; the few meso-regions potentially seeing an increase

in agriculture productivity are located in the Midwest and the Southeast, and in specific

regions on the “agriculture frontier” at the borders of the Amazon forest.36

4 Estimation of structural parameters

Section 2 laid out the key elements of the spatial equilibrium model: the workers’ loca-

tional choice, the direct impact of the climate on agriculture wages, and the endogenous

determination of real wages and rents. The current section presents the empirical strategy

deployed to estimate the structural parameters governing these relationships.

4.1 Migration costs

First we estimate the parameters governing the costs of migrating between location pairs.

Taking the log of Equation 2, and adding an error term to capture unobservable compo-

ton/ha to US$/ha and deflate yields to 2010 prices using FAOSTAT’s US$ deflator.
34More specifically, fck = (∑2010

t=1990 Areackt)/(∑
11
i=1 ∑2010

t=1990 Areaikt). Data on the crop area come from the
Agricultural Survey (PAM-IBGE); they are available annually from 1990 to 2010. We hold fck at current
levels when calculating meso-region agriculture yields for future climate scenarios. However, one valid
concern is that crop choice is likely altered by changes in climate. In this case, changes in crop choice
could indeed lead us to understate the agriculture yields and, therefore, overstate the fall in the share
of agriculture in employment under future climate conditions. We argue, however, that migration flows
would be less affected to the extent that this issue likely impacts agriculture wages in all of the meso-region
in the same fashion.

35The values depicted in the figure are percent changes, that is, (yieldssco
k − yieldsbline

k )/yieldsbline
k , where

sco = A2,B1.
36Appendix Figure 14 shows the agriculture yield computed for baseline and future climates. Under

the baseline climate, the Midwest, South, and Northeast house the most productive agriculture areas; their
production capacity is attributed to their potential for maize, sugarcane, and soybeans.
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nents of migration costs, yields

log πjkst = δkst + δjt −
µ f

σ
1{j 6= k} − µd

σ
Djk −

µc

σ
Cjk +

1
σ

ξ jkst, (7)

where δkst = vkst
σ is a destination-sector-year fixed effect, and δjt is an origin-year fixed

effect.37 Djk are indicators for the distance between j and k, measured in 100 km, and Cjk

are indicators for the absolute difference in historical average temperatures between j and

k.38

We harness data on bilateral migration flows and choice of sector of employment to

estimate
µ f
σ , µd

σ , and µc
σ . To handle the large number of zero bilateral migration flows

observed in the data (56.3% of total flows), we employ a Poisson ML estimation strategy.

Table 1 presents the estimates of the parameters
µ f
σ , µd

σ , and µc
σ in Equation 7. The results

suggest that there are substantial migration costs.39 Migration entails a fixed utility cost,

captured by the coefficient on the indicator 1{j 6= k}. These costs alone are important

when assessing the welfare effects of climate change, as it relates to people’s ability to

adapt to changes in climate by moving to more preferred locations. Additionally, moving

costs depend on geographic location. Workers are less likely to migrate to a destination

that is further away from the origin. Finally, individuals dislike moving to a destination

with historical temperature different from that of their origin.

To assess the model’s goodness of fit, Figure 3 plots the predicted against the actual

bilateral migration probabilities and agriculture share on meso-region employment. The

plots show the model matches the data considerably well—the R-squared is 0.99.

With the estimate of the cost parameters at hand, we move to the estimation of the

remaining parameters of the indirect utility function governing workers’ locational choice

and the housing elasticity.

37δjt = − log
(

∑q∈{a,m} ∑J
l=1 exp(

vlqt
σ −

µjl
σ )
)

.
38We add five distance bins (in 100 km): Distancejk [0.2, 0.4), Distancejk [0.4, 0.8), Distancejk [0.8, 1.6),

Distancejk [1.6, 3.2), and Distancejk [3.2, max); Distancejk [0, 0.2) is the omitted category. The temperature-
difference bins are: |Tj − Tk| [1o, 2o), |Tj − Tk| [2o, 3o), |Tj − Tk| [3o, 4o), and |Tj − Tk| [4o, max); |Tj −
Tk| [0o, 1o) is the omitted category. We do not include bilateral travel times as a component of the bilat-
eral migration cost, but we conclude that our results are robust to that addition. The results from this
robustness check are available upon request.

39Other studies have modeled moving costs when estimating the value of climate (Timmins (2007), Crop-
per and Sinha (2013)) and air pollution (Bayer et al. (2009)). For a more comprehensive study of the role of
transport costs on migration and welfare, see Morten and Oliveira (2016).
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4.2 Elasticities

The next step is to decompose the destination-location-year fixed effects of the indirect

utility into its main components, and to estimate the parameters associated with climate

amenities. Taking the first difference of Equation 1, and using the estimate of vkst
σ from

Equation 7, δ̂kst, we have

∆δ̂kst =
1
σ
(∆ log wkst + λr∆ log rkt + λc∆Ckt + λA∆Akt + λs∆Sst).

We use data from the 2009 Household Budget Survey (Pesquisa de Orçamentos Famil-

iares) to estimate the share of housing on total income, λ̂r = 0.2. We do not observe non-

climate and sector-of-employment amenities; we, therefore, assume that λA∆Akt
σ + λs∆Sst

σ =

astate,t + as + ψkst, where astate,t is state-year fixed effects, as is an indicator for agricul-

ture sector, and ψkst is an idiosyncratic amenity growth shock. The estimating equations,

therefore, are

∆δ̂kst = astate,t + as +
1
σ
(∆ log wkst + 0.2∆ log rkt + λc∆Ckt) + ψkst, (8)

and

∆ log rkt = rstate,t + η∆ log( ∑
s∈{a,m}

wkstLkst) + ζkt, (9)

for the income elasticity of housing prices; rstate,t captures state-specific temporal changes

in the growth of living costs, and ζkt is an idiosyncratic error component.

We estimate the parameters from Equations 8 and 9 using a 3SLS estimator which al-

lows for an arbitrary correlation structure between the error terms. The identification of

the vector of parameters λc relies on time variation in climate amenities instead of cross-

sectional variation. Our measures of climate amenities are 10-year averages of summer

and winter temperatures (in oC), 10-year averages of accumulated summer and winter

rainfall (mm/month), and 10-year averages of sunshine hours (in hours/month); the av-

erages are taken over the span of 10 years preceding the census. The approach enables us

to control for any time-invariant unobservable location features correlated with tempera-

ture and rainfall.

One issue we might face in our empirical analysis is mean reversion. Mean rever-

sion would occur, for example, if some regions of the country observed much warmer

summers in a given period followed by a recovery to “normal” levels in the subsequent

period. In this event, migration may temporarily respond to changes in short-run cli-
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matic conditions, with people migrating back to their origin locations once temperatures

revert to their long-run levels, but permanent migration would see no impact. We argue

that while this issue may be pervasive in studies that employ annual weather variation

(Dell et al. (2012)), it is less likely to affect our estimates which rely on changes in 10-year

averages.

The remaining challenge is the correlation between unobservable non-climate amenity

growth and wage growth. Locations that experience faster productivity gains may also

see a faster rise in both publicly- and privately-provided amenities. Additionally, labor

supply at a given destination is a function of wages and housing prices, which leads to

simultaneity bias. To address these issues, we use two instruments. The first is a local la-

bor demand shifter, known as Bartik shocks (Bartik (1991)). They serve as instruments for

wage growth in both agriculture and non-agriculture sectors. Bartik shocks are calculated

as follows

∆Bartikkt = ∑
ind

(log wind,−k,t − log wind,−k,t−10)
Lind,k,t0

Lk,t0

,

where ind indexes the industry, t0 is the baseline year (1970 in this case), wind,−k,t is the

average national (log) wage in industry ind and period t, excluding location k from the

average, Lind,k,t0 is total employment in industry ind, in location k, and time t0, and Lk,t0

is total employment in location k and time t0.

The second is a measure of “labor market access” and works as an instrument for labor

supply (Donaldson and Hornbeck (2016), Morten and Oliveira (2016)). The presence of

migration costs implies that the labor supply to destination location k depends on the

ease of access to that location. Therefore, we compute labor market access to location k

as an inverse-bilateral-cost weighted average of the population of origin locations. More

specifically,

∆ log MAkt = ∆ log

(
J

∑
j 6=k

1
µ̂jk

Lj,t−1

)
,

where µ̂jk is the migration costs estimated from Equation 7, and Lj,t−1 is the size of the

labor force in the previous period (agriculture and non-agriculture labor). We exclude

city k’s previous population from its labor market access measure.40

Table 2 shows the estimates of 1
σ and η, and the estimates of λc

σ . The inverse elasticity

of housing supply parameter is 0.65. This is a somewhat low inverse elasticity, which

suggests that rents do not respond much to increases in local demand for housing. It

40Appendix Figure 15 shows that both instruments are strongly associated with the endogenous vari-
ables.
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is, however, expected for Brazil, as most meso-regions have abundant land for housing

development, with the exception of large cities like São Paulo and Rio de Janeiro. The

estimates of the parameters λc reveal that winter temperature and sunshine hours are

positive amenities, whereas winter rain and summer temperature are negative amenities.

It is also worth noting that the magnitude of the coefficient on winter temperature is larger

than the magnitude of the coefficient on summer temperature, indicating that individuals

would be willing to pay more to experience warmer winters than they would pay to enjoy

cooler summers. This finding is in contrast to what studies for developed countries have

reported (Sinha et al. (2018)).

5 Climate change impact on migration and welfare

Armed with the parameter estimates from the spatial equilibrium model we simulate

the effects of climate change on migration and welfare which accounts for the changes

in wages and housing prices induced by population re-sorting. We perform the simula-

tions for two climate-change scenarios from the IPCC program: the A2 emissions scenario

(pessimistic), and the B1 emissions scenario (optimistic). To run the simulations, we need

estimates of all the components of the indirect utility, vkst, and the cost parameter, µjk.

One issue is that we do not have data on non-climate and sector-of-employment ameni-

ties; we, therefore, estimate their sum, Xkst, as the residual indirect utility after netting out

the utility enjoyed from climate amenities, wages, and housing prices. We use the esti-

mates of the indirect utility for 2010—last year available—and evaluate climate amenities

at the average temperatures prevailing during the baseline period. More specifically

X̂bline
ks,2010 = δ̂ks,2010 −

1
σ̂
(log wks,2010 − λ̂r log rk,2010 + λ̂cCbline

k ).

Let sco index the climate-change scenario, where sco = A2, B1. The initial value for

agriculture wages under the new climate is calculated as

log wsco
ka = log wka,2010 + log(1 + θsco

k ),

where θsco
k is the rate of change in agriculture yields computed from the GAEZ dataset.41

The initial value for non-agriculture wages is log wsco
km = log wkm,2010, since we assume that

climate does not impact the non-agriculture sector. The indirect utility then is derived for

41Using Equation 6, we calculate θsco
k = (yieldssco

k − yieldsbline
k )/yieldsbline

k .
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each scenario as

δ̂sco
ks =

1
σ̂
(log wsco

ks − λ̂r log rk + λ̂cCsco
k + X̂bline

ks,2010).

From the gravity equation for migration flows, we calculate bilateral migration costs

as

µ̂sco
jk =

1
σ̂
(µ̂ f1{j 6= k}+ µ̂dDjk + µ̂cCjk).

Finally, the counterfactual bilateral migration probabilities are given by

π̂sco
jks =

exp(δ̂sco
ks − µ̂sco

jk )

∑q∈{a,m} ∑J
l=1 exp(δ̂sco

lq − µ̂sco
jl )

.

With these equations at hand, we proceed to simulate the impact of climate change on

the economy. Faced with new climate conditions, some workers respond to changes in

amenities and agriculture wages by choosing a different location and sector of employ-

ment. As migration takes place, general-equilibrium forces spur adjustments in wages in

both sectors and rental prices. The new prices induce additional migration and, conse-

quently, further changes in wages and rents. A new equilibrium is reached when migra-

tion ceases and population converges.42

After we solve for the new equilibrium quantities, we calculate the counterfactual

aggregate migration rates under each scenario as

Migration ratesco = 1−
∑s∈{a,m} ∑J

k=1 Popk,2005π̂sco
kks

∑J
k=1 Popk,2005

, (10)

where π̂sco
kks is the fraction of location k’s population that chooses not to out-migrate. We as-

sume the meso-region population distribution in place five years prior to the 2010 census

because we estimate five-year migration probabilities.43 From Equation 10, the simulated

42We use the following equations to update wages and rents in each iteration i

log wks,i+1 = wres
ks,0 + γ̂s log Lks,i

and
log rk,i+1 = rres

k,0 + η̂ log( ∑
s∈{a,m}

wks,iLks,i),

where wres
ks,0 = log wks,0 − γ̂s log Lks,0 and rres

k,0 = log rk,0 − η̂ log(∑s∈{a,m} wks,0Lks,0); the initial values, in-
dexed by 0, are the ones we observe in the data.

43π̂sco
kks =

exp(δ̂sco
ks )

∑q∈{a,m} ∑J
l=1 exp(δ̂sco

lq −µ̂sco
kl )

.
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impact of climate change on migration is calculated as the percent change relative to the

baseline migration rate: (Migration ratesco −Migration ratebline)/Migration ratebline.

We conduct three experiments. The first experiment assumes that temperature changes

only impact the amenity value of locations; the second postulates that only agriculture

wages are affected; and the third experiment assumes both city amenity value and agri-

culture wages are impacted by climate change.

Table 3 reports the results from the simulations. Columns (1) and (3) present the re-

sults from our benchmark model with costly migration and general equilibrium effects.

The third experiment indicates that under scenario A2 the migration rate is 5.79% higher

than the migration rate under contemporaneous climate. The increase amounts to a 0.04

percentage-points increase from the baseline migration rate which, based on the projected

population in 2040, translates into 929,282 more migrants. The impact on migration rate is

smaller under B1 because temperature will not change as much compared to the A2 sce-

nario. (The effect is a 0.03 percentage-points change or 678,056 additional migrants.) To

underscore the importance of accounting for the change in agriculture yields we compare

the numbers from the third experiment with the ones obtained under the first experiment.

The increase in migration rates is considerably smaller (about 50% lower under A2 and

70% under B1). Also important to note is that the share of employment in agriculture is

impacted by climate change (20 to 24% lower under future climate). The effect is mostly

due to the loss in agriculture yields predicted for many parts of the country.

Columns (2) and (4) present the changes in migration rates and agriculture shares

when we shut down the labor and housing markets. When wages and rents are not

allowed to respond to the inflow and outflow of workers, the increase in migration due

to climate change is overstated (9.37% under A2 and 7.91% under B1), pointing to the

importance of factoring in the rise in the cost of living and reductions in wages caused by

population re-sorting.

We check the robustness of our results to a different specification for climate amenities

in the indirect utility function. Appendix Table 2 displays the parameter estimates of a

model that features polynomials of degree three in summer and winter temperatures; Ap-

pendix Table 3 shows the simulations assuming the new specification. We still conclude

that aggregate migration rate increases under both climate-change scenarios.

Next we assess the impact on the regional distribution of the population and wel-

fare. The IBGE groups the Brazilian municipalities (and meso-regions) into five macro-
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regions.44 We calculate the share of macro-region r in total population under scenario sco

as

Population sharesco
r = ∑

k∈r

∑s∈{a,m} ∑j∈J Popj,2005π̂sco
jks

∑k∈J ∑s∈{a,m} ∑j∈J Popj,2005π̂sco
jks

. (11)

To calculate the impact on welfare, we rely on the distributional assumption about the

idiosyncratic taste shock εnkst, and derive the expected utility conditional on the locational

choice of individuals originated from location j as45

Utilitysco
j = γ + log ∑

s∈{a,m}
∑
k∈J

exp(δ̂sco
ks + µ̂sco

jk ), (12)

where γ ≈ 0.577 is the Euler-Mascheroni constant. We find the welfare effect on the

macro-region by averaging over the meso-regions that are part of it, weighting by the

meso-region’s 2005 population. The welfare impact of climate change on macro-region r

under scenario sco is measured as (Utilitysco
r −Utilitybline

r )/σ̂−1, where the change in the

expected utility is converted to log wage units after dividing it by the marginal utility of

wages.

Table 4 shows the simulated impact of temperature changes on population (Equation

11) and expected utility (Equation 12) for each of the five macro-regions. We focus on

the third experiment which gives us the total effect. Under scenarios A2 and B1, the

Southeast and the Midwest regions gain from climate change. The large welfare gain

in the Southeast under A2 could be explained by winter temperatures rising more than

summer temperatures (see Table 5). Additionally, agriculture yields are expected to in-

crease slightly in meso-regions that are part of the Southeast and Midwest (see Figure

2), which could also account for the gains in those areas. In the North and Northeast,

however, scenario A2 brings about large welfare losses; one explanation for these losses

is the significant reduction in predicted agriculture yields in these regions (see Figure 2).

The simulated changes in population mirror that found for expected utility: under the A2

scenario, the Southeast and Midwest see a sizable influx of migrants, whereas the other

regions lose population. Under B1 the North also becomes more attractive, possibly be-

cause some meso-regions that comprise this macro-region expect agriculture yields to go

up. The South and Northeast lose their population to the other macro-regions. Timmins

44The 135 meso-regions are grouped into five macro-regions, which are: North (NO), Northeast (NE),
Southeast (SE), South (SO), and Midwest (MW). The grouping of meso-regions into macro-regions is de-
picted in Appendix Figure 16.

45An individual’s utility from their chosen location is calculated after integrating out over the distribution
of the idiosyncratic taste shock, ε. See Appendix A.5 for details on the derivation.
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(2007) does not assess changes in population, but he finds similar results for welfare after

employing a different estimation strategy and data from alternative time periods: positive

welfare effects in the South and negative effects in the North.

We now look at how climate change affects the regional flow of migrants. To that end,

we take the projected 2040 meso-region population as our initial population distribution,

and calculate the counterfactual five-year migration flows using the equilibrium migra-

tion probabilities under scenarios A2 and B1: Migration flowsco
jk = ∑s∈{a,m} Pop2040,kπ̂sco

jks .46

We then take the sum of these flows across the meso-regions that compose a macro-region

origin-destination pair, r and v:

Migration flowsco
rv = ∑

j∈r
∑
k∈v

Migration flowsco
jk . (13)

Table 6 shows the absolute change in the region-to-region flow of migrants (Equa-

tion 13) for scenarios A2 and B1 relative to the baseline climate. The counterfactual

regional migration flows indicate that an additional 530,000 people migrate to another

macro-region between 2040 and 2045 as a result of climate-change scenario A2 (the num-

ber is 266,000 under B1). The Northeast, one of the poorest, is the region that contributes

the most to the rise in the number of migrants: an additional 616,000 migrants leave the

region in a five-year period under scenario A2 compared to the baseline (715,000 under

B1). The Southeast, the richest region in the country, receives a larger inflow of people

from all the other regions under both scenarios (an additional 805,000 migrants under A2

scenario and 597,000 under B1). The largest chunk of the inflow of migrants to the South-

east comes from the Northeast: while 405,000 more migrants under A2 (393,000 under

B1) are expected in the Southeast from the Northeast, 261,000 fewer migrants under A2

(266,000 under B1) are expected in the Northeast from the Southeast. The Midwest is an-

other region whose inflow (outflow) of migrants from all regions (except the Southeast)

is expected to increase (decrease). Like the Southeast, the net flow of migration from the

Northeast will be higher: 122,000 more people are expected to migrate from the North-

east under A2 (140,000 more under B1) but 64,000 fewer people from the Midwest will

migrate to that region under A2 (67,000 fewer under B1). The Midwest is Brazil’s current

agriculture frontier, and potential agriculture yields are predicted to rise in many of its

meso-regions particularly under the A2 scenario (see Figure 2).

46We update the 2017 meso-region population estimates from the IBGE using state-level population
growth rates from 2017–2030 (also provided by the IBGE) and national growth rates from 2030–2040 (2017
Revision of World Population Prospects, provided by the United Nations).
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The last three panels of Table 6 show the impact on regional population (as a per-

centage of the 2040 projected population), out-migration, and in-migration rates. The

numbers confirm the results from Table 4 that the Northeast is the biggest loser: the re-

gion loses about 1.5% of its population to other regions under A2 (1.8% under B1); 63% of

the fall in Northeast’s population is due to the increase in out-migration (the remainder is

due to the decrease in in-migration). The Southeast and Midwest are the winners. Under

scenario A2 there is a 1.4% increment in the Southeast’s population (about 60% due to in-

crease in in-migration rate), and a 1.2% increment in the Midwest’s population (90% due

to increase in in-migration). Both the North and South are expected to lose population but

the magnitude of the loss varies considerably across climate-change scenarios. As Figure

2 suggests, agriculture yields in the North are predicted to fall much more under the A2

scenario, which could explain the discrepancy.

6 Concluding Remarks

This paper fits into a large literature that assesses the economic consequences of environ-

mental changes. In particular, we ask if long-term changes in the climate induce migration

and re-shape the spatial distribution of the labor force in Brazil. In doing so, we propose

and estimate a spatial equilibrium model with costly migration in which the climate af-

fects the individuals’ choice of location through the usual location-amenity channel and a

new channel working through changes in agriculture productivity. The model allows us

to answer those questions while accounting for general equilibrium effects on labor and

housing markets.

Our main conclusion is that under future climate conditions the Northeast, one of the

least developed regions, would lose population and be worse off; on the other hand, the

richest and most populated region, the Southeast, would see substantial positive effects

on its population size and welfare. Because of the potential deepening of the existing

south-north inequality in Brazil, our results can be used to identify the more vulnerable

populations in order to promote local public policies to prepare the regions for population

inflows and outflows and for negative agriculture shocks. Our study also underscores

that migration could be used as an adaptation instrument to deal with climate change.
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Figures and Tables

Figure 1: Change in temperature (in degrees Celsius) in summer and winter, B1 and A2
scenarios

Notes: Change in temperature relative to the baseline. Baseline climate covers the 1961–1990 period; climate
change forecast covers the 2041–2070 period. Data source: CPTEC/INPE.
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Figure 2: Change in log agriculture yields, B1 and A2 scenarios

Notes: Agriculture yields (in USD/ha) calculated as the weighted sum of potential crop yields obtained
from the GAEZ dataset; weight is the share of the crop in total crop area over the 1990–2010 period. Baseline
climate covers the 1961–1990 period; climate change forecast covers the 2041–2070 period. Data source:
GAEZ and PAM-IBGE.
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Figure 3: Model’s goodness of fit: bilateral migration probabilities and agriculture share
in total employment

Notes: The first figure depicts the bilateral migration probabilities; each point is an origin-destination-sector-
year observation (145,800 observations total). The second figure shows agriculture employment shares;
each point is a destination-year observation (540 observations total). Data source: Population Census, 1980-
2010. 28



Table 1: Estimates of cost parameters

(1) (2)
b/se b/se

1{j 6= k} 4.93*** 4.84***
(0.033) (0.035)

Distancejk [2, 4) 1.07*** 1.01***
(0.045) (0.044)

Distancejk [4, 8) 2.39*** 2.31***
(0.047) (0.047)

Distancejk [8, 16) 3.37*** 3.26***
(0.054) (0.057)

Distancejk [16, 32) 3.69*** 3.57***
(0.054) (0.077)

Distancejk [32, max) 5.15*** 5.05***
(0.072) (0.088)

|Tj − Tk| [1o, 2o) 0.30***
(0.037)

|Tj − Tk| [2o, 3o) 0.33***
(0.054)

|Tj − Tk| [3o, 4o) 0.17**
(0.076)

|Tj − Tk| [4o, max) 0.20***
(0.074)

No. meso-sec pairs 145800 145800
Migration rate 0.076 0.076
Dist migrated 6.50 6.50
Avg. diff temp 0.29 0.29

Notes: Parameters generated us-
ing Poisson ML estimator. Estimat-
ing sample consists of 135 × 135 × 2 ×
4 = 145, 800 origin-destination-sector-
year observations. 1{j 6= k} is an indi-
cator for whether the destination meso-
region is different from the origin meso-
region; Distancejk is the Euclidean dis-
tance, in 100km; The omitted category is
Distancejk [0, 2). |Tj − Tk| is the absolute
difference in average of monthly temper-
atures (in oC) measured 10 years prior to
the census; the omitted category is |Tj −
Tk| [0o, 1o). Data source: CPTEC/INPE
and Population Census, 1980–2010.
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Table 2: Structural coefficient estimates

Parameters
(1)

b/se

Equation 1: housing supply

η 0.65***
(0.21)

Equation 2: indirect utility

σ−1 2.16***
(0.74)

σ−1λsummer temp. -0.22***
(0.081)

σ−1λwinter temp. 0.29***
(0.081)

σ−1λsummer rain -0.0022
(0.0016)

σ−1λwinter rain -0.0047***
(0.0017)

σ−1λsummer sunshine 0.0056**
(0.0028)

σ−1λwinter sunshine -0.0027
(0.0030)

Equation 3: labor demand

βm -0.19***
(0.023)

βa -0.050**
(0.020)

Notes: Estimating sample consists of 135×
2 × 4 = 1, 080 destination-sector-year ob-
servations. Parameter estimates from the
system of two equations obtained from a
3SLS estimator which allows for an arbi-
trary error correlation. Endogenous em-
ployment and wages instrumented by Bar-
tik shocks and inverse-cost weighted mar-
ket access (interacted with sector of employ-
ment). Economic and climate variables are
in first differences, available for years 2010–
2000, 2000–1991, and 1991–1980. Summer
and winter temperatures are 10-year aver-
ages prior to the census year. Additional
controls (sector fixed effects and state-year
fixed effects) included but not reported.
Data source: Population Census, 1980–2010.30



Table 3: Simulated impact of climate change on aggregate
migration rates

A2 scenario B1 scenario
(1) (2) (3) (4)
GE PE GE PE

Experiment 1: climate impacts city amenity value
∆ Migration rate (%) 2.85 6.07 1.24 4.41
∆ Agric. share (%) -0.78 -0.78 -0.75 -0.72

Experiment 2: climate impacts agricultural productivity
∆ Migration rate (%) 0.86 1.51 0.80 1.67
∆ Agric. share (%) -19.9 -21.6 -23.8 -25.7
Experiment 3: climate impacts amenities and ag. productivity
∆ Migration rate (%) 5.79 9.37 4.23 7.91
∆ Agric. share (%) -20.3 -22.0 -24.1 -26

Notes: Columns (1) and (3) show simulations from model with
costly migration and general equilibrium effects; columns (2) and
(4) show simulations from model with costly migration without
general equilibrium effects. Climate change forecasts for 2041–
2070 period. The effects represent changes relative to baseline cli-
mate, which is the long-term average over 1961–1990. Climate
change scenarios: A2 (high emissions) and B1 (low emissions).
Simulations use non-climate amenity levels of year 2010. Experi-
ment 1: assumes that climate variables impact city amenity value
only; experiment 2: climate variables impact agriculture produc-
tivity only; experiment 3: climate variables impact city amenity
value and agriculture productivity. Data source: CPTEC/INPE,
GAEZ, and 1980–2010 Population Census.
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Table 5: Temperature change forecast by macro-region,
weighted by 2010 population

NO NE SE SO MW
(1) (2) (3) (4) (5)

A2 climate scenario
Summer temperature (∆oC) 2.64 1.15 2.75 3.58 6.12
Winter temperature (∆oC) 2.21 1.13 3.52 2.90 5.87

B1 climate scenario
Summer temperature (∆oC) 1.13 0.18 1.87 2.94 4.49
Winter temperature (∆oC) 0.77 -0.36 1.85 2.05 3.89

Notes: Climate change forecasts for 2041–2070 period. Differ-
ence in temperature is relative to baseline. Baseline climate is cal-
culated as the average over 1961–1990. Temperature changes by
macro-region are weighted by 2010 population. Climate change
scenarios: A2 (high emissions) and B1 (low emissions). Data
source: CPTEC/INPE and Population Census.
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Table 6: Simulated impact of climate change on regional migration
flows and 2040 population

A2 scenario B1 scenario
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
NO NE SE SO MW NO NE SE SO MW

∆ 5-year migration flows (100,000)
NO -2.97 0.19 1.75 0.36 0.68 -0.69 -0.42 0.68 0.10 0.32
NE 0.28 -6.16 4.05 0.61 1.22 0.77 -7.15 3.93 1.04 1.40
SE -0.53 -2.61 5.19 -1.86 -0.19 -0.27 -2.66 4.51 -1.45 -0.13
SO 0.017 -0.37 1.57 -1.58 0.36 0.067 -0.58 0.81 -0.53 0.23
MW -0.10 -0.64 0.68 -0.16 0.22 0.034 -0.67 0.55 -0.050 0.14

2040 population (1,000,000)
19.9 62.0 95.1 32.5 18.8 19.9 62.0 95.1 32.5 18.8

∆ population (% of 2040 pop)
-1.66 -1.55 1.39 -0.81 1.21 -0.043 -1.85 1.10 -0.27 1.05

∆ out-migration (% of pop)
1.49 0.99 -0.55 0.49 -0.12 0.34 1.15 -0.47 0.16 -0.074

∆ in-migration (% of pop)
-0.17 -0.56 0.84 -0.32 1.09 0.30 -0.71 0.62 -0.11 0.97

Notes: Bilateral 5-year migration probabilities come from the model with costly
migration and general equilibrium effects. The predicted migration flows are cal-
culated using the projected 2040 population as initial population. The numbers
reported on the first panel of the table are the changes in bilateral migration flows
due to climate change relative to the baseline climate (the average climate over the
1961–1990 period). Data source: GAEZ, CPTEC/INPE and 1980–2010 Population
Census.
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A Appendix

A.1 Figures and Tables
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Year 2010

Appendix Figure 1: Share of agriculture in total employment

Notes: Data source: 1980-2010 Population Census.
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Appendix Figure 2: 10-year average temperature in summer by census year, in degrees
Celsius

Notes: Daily temperatures are averaged out over the 10 years preceding the census. Data source: Brazilian
Institute of Meteorology.
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Appendix Figure 3: 10-year average temperature in winter by census year, in degrees
Celsius

Notes: Daily temperatures are averaged out over the 10 years preceding the census. Data source: Brazilian
Institute of Meteorology.
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Appendix Figure 4: 10-year average rainfall in summer by census year, in mm/month

Notes: Daily rainfall is averaged out over the 10 years preceding the census. Data source: Brazilian Institute
of Meteorology.
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Appendix Figure 5: 10-year average rainfall in winter by census year, in mm/month

Notes: Daily rainfall is averaged out over the 10 years preceding the census. Data source: Brazilian Institute
of Meteorology.
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Appendix Figure 6: 10-year average sunshine in summer by census year, in
hours/month

Notes: Daily sunshine hours are averaged out over the 10 years preceding the census. Data source: Brazilian
Institute of Meteorology.
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Appendix Figure 7: 10-year average sunshine in winter by census year, in hours/month

Notes: Daily sunshine hours are averaged out over the 10 years preceding the census. Data source: Brazilian
Institute of Meteorology.
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Appendix Figure 8: Change in summer temperature (10-year averages) by census year,
in degrees Celsius

Notes: Difference in decadal average temperatures at census year. Data source: Brazilian Institute of
Meteorology.
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Appendix Figure 9: Change in winter temperature (10-year averages) by census year, in
degrees Celsius.

Notes: Difference in decadal average temperatures at census year. Data source: Brazilian Institute of
Meteorology.
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Appendix Figure 10: Change in summer rainfall (10-year averages) by census year, in
mm/month.

Notes: Difference in decadal average rainfall at census year. Data source: Brazilian Institute of Meteorology.
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Appendix Figure 11: Change in winter rainfall (10-year averages) by census year, in
mm/month.

Notes: Difference in decadal average rainfall at census year. Data source: Brazilian Institute of Meteorology.
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Appendix Figure 12: Change in summer sunshine (10-year averages) by census year, in
hours/month.

Notes: Difference in decadal average sunshine hours at census year. Data source: Brazilian Institute of
Meteorology.
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Appendix Figure 13: Change in winter sunshine (10-year averages) by census year, in
hours/month.

Notes: Difference in decadal average sunshine hours at census year. Data source: Brazilian Institute of
Meteorology.
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Appendix Figure 14: Agriculture yields (USD/ha), baseline and forecast periods (B1 and
A2 scenarios)

Notes: Agriculture yields (in USD/ha) calculated as the weighted sum of potential crop yields obtained
from the GAEZ dataset; weight is the share of the crop in total crop area over the 1990-2010 period. Baseline
climate covers the 1961-1990 period; climate change forecast covers the 2041-2070 period. Data source:
GAEZ.
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Appendix Figure 15: Correlation between instruments and endogenous variables

Notes: Figures present binned scatterplots and regression line. The observations are meso-region-sector
pairs by year. Data source: Population Census, 1980-2010.
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Appendix Figure 16: Brazil’s macro-regions

Notes: The 135 meso-regions are grouped into five macro-regions. Data source: IBGE.
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Appendix Table 1: Summary statistics, by census year

(1) (2) (3) (4)
Mean/sd 1980 1991 2000 2010

Agriculture share in labor force 0.32 0.27 0.23 0.23
(0.25) (0.21) (0.18) (0.15)

Out migration rates 0.14 0.061 0.053 0.043
(0.068) (0.025) (0.018) (0.017)

Non-agriculture wages (USD/hour) 3.37 3.25 3.92 4.32
(0.82) (0.98) (1.01) (0.89)

Agriculture wages (USD/hour) 1.82 1.84 2.13 2.64
(0.64) (1.00) (0.76) (0.77)

Rents (USD/room) 30.9 29.5 38.1 33.7
(15.5) (12.7) (19.0) (10.8)

Number observations 6596494 4357223 5562153 6802290
Number meso-regions 135 135 135 135

Notes: Summary statistics calculated from Census microdata; sample consists of males
and females aged 25 to 75 who made non-zero earnings in main occupation. Table
shows meso-region averages weighted by population. Financial values in year 2010
USD. 1 USD = 1.838 BRL in 2010 (yearly average exchange rate). Data source: Popula-
tion Census, 1980-2010.
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Appendix Table 2: Structural coefficient
estimates - alternative specification for

climate amenities

Parameters
(1)

b/se

Equation 1: housing supply

η 0.75***
(0.17)

Equation 2: indirect utility

σ−1 2.17***
(0.75)

σ−1λsummer temp. -18.8***
(6.57)

σ−1λsummer temp.2 0.72***
(0.27)

σ−1λsummer temp.3 -0.0093**
(0.0037)

σ−1λwinter temp. 3.19***
(1.06)

σ−1λwinter temp.2 -0.14**
(0.055)

σ−1λwinter temp.3 0.0020**
(0.00094)

Equation 3: labor demand

βm -0.19***
(0.023)

βa -0.050**
(0.020)

Notes: Each of the 135× 2× 4 = 1, 080 is
a meso region-sector-year. Parameter esti-
mates from the system of two equations ob-
tained from a 3SLS estimator which allows
for an arbitrary error correlation. Endoge-
nous employment and wages instrumented
by Bartik shocks and inverse-cost weighted
market access (interacted with sector of em-
ployment).Additional controls (sector fixed
effects and state-year fixed effects in all
equations; summer and winter rainfall and
sunshine hours and s.d. of rainfall in in-
direct utility; climate variables in labor de-
mand equation) included but not reported.
Data source: Population Census, 1980-2010.
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Appendix Table 3: Simulated impact of climate change on
aggregate migration rates. Alternative specification for

climate amenities

A2 scenario B1 scenario
(1) (2) (3) (4)
GE PE GE PE

Experiment 1: climate impacts city amenity value
∆ Migration rate (%) 8.42 13.3 2.36 5.47
∆ Agric. share (%) -0.090 0 -0.060 0

Experiment 2: climate impacts agricultural productivity
∆ Migration rate (%) 0.84 1.51 0.77 1.67
∆ Agric. share (%) -20.2 -22.0 -24.1 -26.1
Experiment 3: climate impacts amenities and ag. productivity
∆ Migration rate (%) 10.2 15.7 4.61 8.37
∆ Agric. share (%) -20.3 -22.0 -24.1 -26.1

Notes: Alternative specification: polynomial of degree three in
summer and winter temperatures. Columns (1) and (3) show sim-
ulations from model with costly migration and general equilib-
rium effects; columns (2) and (4) show simulations from model
with costly migration without general equilibrium effects. Cli-
mate change figures for 2041-2070 forecast. The effects repre-
sent changes relative to baseline climate, which is the long-term
average over 1961-1990. Climate change scenarios: A2 (high
emissions) and B1 (low emissions). Simulations use non-climate
amenity levels of year 2010. Experiment 1: assumes that cli-
mate variables impact city amenity value only; experiment 2: cli-
mate variables impact agriculture productivity only; experiment
3: climate variables impact city amenity value and agriculture
yields. Data source: CPTEC/INPE, GAEZ, and 1980-2010 Pop-
ulation Census.
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A.2 Kriging Interpolation Technique
We use a kriging interpolation technique to assign weather-station data to each of the 135 meso-
regions. The kriging technique predicts the weather at a given point using a weighted average of
the observed data in a neighborhood. It assumes that each geographic coordinate is a realization
of a spatial process. The weights do not depend on the actual data points but on the variogram
estimator, which describes the degree of spatial dependence of the stochastic process. The esti-
mator uses a measure of the variance of the difference between two data points. The technique
has an attractive feature: the predicted weather data equals the actual data. It performs well for
weather/climate data, and is more flexible than usual techniques, such as nearest neighbor, or
inverse distance weighting interpolation (Haas, 1990; Xavier et al., 2016). One downside of the
interpolation technique is that it might cause spatial auto-correlation among the regression errors.
This issue is mitigated by using clustered standard errors.

A.3 Global and Regional Climate Models
The INPE calculates regional climate change over South America by downscaling the Hadley
Centre Global Environmental Model version 2 Earth System (HadGEM2-ES) and the Model for
Interdisciplinary Research on Climate (MIROC5). The HadGEM2-ES is a physical climate model
developed by Hadley Center; it includes many earth-system components and their interactions,
such as terrestrial, ocean and gas-phase tropospheric chemistry (Chou et al., 2014b,a; Collins et al.,
2011). The MIROC5, developed by a collaboration between Japanese research centers, also in-
cludes atmosphere and ocean circulation models (Chou et al., 2014b,a; Watanabe et al., 2010). The
downscaled models are called “Regional Climate Models (RMCs)” and are more accurate than
GCMs: while RCMs use grid sizes of 20km, GCMs adopt grid sizes of 200 to 400km.

A.4 The GAEZ Project
To understand the relationship between climate and agriculture productivity, we use the GAEZ
grid-level data set. The GAEZ data draw on state-of-the-art agronomic models combined with
high-resolution data on land characteristics and climatic conditions. The methodology was de-
veloped by the International Institute for Applied System Analysis (IIASA) and the Food and
Agriculture Organization of the United Nations (FAO). One of the main outputs of the model is
the crop potential yields—the upper limits for the crops production. The model that generates
daily potential crop yield data is based on a crop growth cycle from emergence to maturity that
predicts the attainable crop production given a variety of climatic and soil conditions, as well as
use of inputs such as water resources and labor intensity, and farm management. To predict crop
growth the model also makes use of detailed agronomic knowledge over crop parameters, such
as harvest index, maximum leaf area, and maximum rate of photosynthesis.

According to Fischer et al. (2012), the model is estimated following five steps, or modules.
First, climate variables and indicators are calculated for each grid-cell. Temporal interpolations
can be used to transform monthly to daily data, which is required for thermal and soil moisture
regimes to calculate potential and actual evapotranspiration of plants considering the crop cycle
length.47Based on these indicators, a multiple-cropping zones classification is produced for rain-
fed and irrigated conditions.

47Many climatic variables are also used as inputs. Thermal regime is captured by the annual temperature
(mean and range), temperature during growing period, frost-free period, thermal zones (accumulated tem-
perature sums for average daily temps). Moisture conditions are approximated by annual rainfall (mean,
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Second, they calculate maximum attainable biomass and yield from radiation and temperature
regimes. The growth of each crop type is tested for several time periods with separate analysis for
irrigated and rain-fed conditions, which impact crop evapotranspiration and crop water deficit
during the growing cycle. The growing dates and cycle length (days from sowing to harvest)
producing the maximum yield define the optimum crop calendar of each crop type in each grid-
cell (when the grid conditions permit the crop’s cultivation).48The types also differ with assumed
inputs level. Low input level crops are considered to have low harvest index, a measure of yield
efficiency, and inferior leaf area index as a result of management limitations. In contrast, high
input level crops, with advanced field management, present optimum plant densities with high
leaf area index.

Third, after calculating all parameters for a large number of crop sub-types, they compute yield
reduction factors, also named agro-climatic constraints, to adjust for average climatic conditions
(due to year-to-year variability of soil moisture supply), pests, diseases and weed constraints,
water stress, excessive wetness, and frosts. The reduction factors are calculated for each crop and
by level of inputs, and are applied to the results from the second step.49

Fourth, they calculate yield reduction factors based on agro-edaphic constraints, or limitations
by soil and terrain conditions. Soil conditions refer to nutrient availability and retention capacity,
oxygen, salinity, sodicity, and toxicities conditions, as well as soil management constraints by crop
and by specific input usage. Terrain conditions mainly refer to slope and altitude classes. The
yield reduction factors are calculated by crop types, input level, soil types and slope classes, and
applied to the results from the second step for each grid cell.

The fifth and final step is the integration of all previous steps. It considers the agro-climatic
evaluation for biomass and yield calculated in the second and third step and uses the soil informa-
tion from the forth step to adjust the yields by soil and slopes for each grid-cell, always separately
for rain-fed and irrigated conditions. Data on land cover pattern (e.g. water bodies), protected
areas and restrictions for agricultural use are also employed in the calculations.

Data are available for 11 crop groups, 49 crops, 92 crop types, and 280 crop subtypes. The unit
of measurement of potential yields is tonnes per hectare. All data are calculated for a 5 arc-minute
and 30 arc-second resolution (approximately 10-km grid) under contemporary climate conditions
(30-year average from 1961 to 1990), and under IPCC climate change scenarios (B1, B2, A1FI,
and A2) over future periods (2011-2040, 2041-2070, and 2071-2100). The GCMs available are the
HadCM3 (UK), ECHAM4 (Germany), CSIRO (Australia), and CGCM2 (Canada).

The GAEZ estimates can be accessed by choosing the region (countries, continents, regions),
time span of interest (historical or forecast), water supply systems (rain-fed or irrigated produc-
tion), input and management levels (low-level, intermediate-level, and high-level), and tempera-
ture and moisture constraints.50The output is the crop potential yield by grid in the selected area.

coefficient of variation, standard deviation), fournier index (mean, coefficient of variation, standard devia-
tion), evapotranspiration (sum of evaporation and plant transpiration to atmosphere), seasonal and quar-
terly aridity index Wind speed, sunshine hours, and relative humidity are also included in the model, as
well as the length of growing period by crop.

48The length of growth cycle (in days) and the harvested part of the plant (grain, seed, leaves, among
others) for each 280 crop types are in Table A-4-4 in Fischer et al. (2012). Crop types characterize various
sub-types within a plant species, including differences in crop cycle length, growth and development pa-
rameters. For example, soybean has six different types, which differ by climate (tropical/subtropical, and
temperate/subtropical) and by length (105, 120, and 135 days).

49According to Fischer et al. (2012), some of the constraint ratings were obtained through expert opinion.
50Assuming low-level inputs means that farm production is for subsistence using traditional labor tech-

niques and no application of chemicals and nutrients; assuming intermediate-level inputs means that farm
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A.5 Model Appendix
This section contains the derivation of the expected utility. The utility of individual n from city
j living in city k and working in sector s is Vnjks = Vks + µjks + εnks. Assuming εnks is i.i.d and
follows an extreme value distribution of type I, that is, F(ε) = e−e−ε

, the probability of migrating
from j to k and working in sector s is:

P(choose k and s|start in j) = P(Vks + µjk + εks > Vlm + µjl + εlm, ∀l 6= k, ∀m 6= s)

=
∫ ∞

−∞
P(Vlm + µjl + εlm < v, ∀l 6= k, ∀m 6= s)P(Vks + µjk + εks = v)dv

=
∫ ∞

−∞
Πl 6=kΠm 6=se−e−(v−(Vlm+µjl ))

e−(v−(Vks+µjk))e−e−(v−(Vks+µjk))
dv

=
∫ ∞

−∞
e−(v−(Vks+µjk))ΠlΠme−e−(v−(Vlm+µjl ))

dv

=
∫ ∞

−∞
e−ve(Vks+µjk)ΠlΠme−e−(v−(Vlm+µjl ))

dv

= e(Vks+µjk)
∫ ∞

−∞
e−ve−∑l ∑m e−(v−(Vlm+µjl ))

dv

= e(Vks+µjk)
∫ ∞

−∞
e−ve−e−v ∑l ∑m e(Vlm+µjl )

dv

Define β = ∑l ∑m e(Vlm+µjl) and t = −e−vβ. Then,

P(choose k and s|start in j) = e(Vks+µjk)
∫ 0

−∞

1

∑l ∑m e(Vlm+µjl)
etdt

=
e(Vks+µjk)

∑l ∑m e(Vlm+µjl)

∫ 0

−∞
etdt

=
e(Vks+µjk)

∑l ∑m e(Vlm+µjl)
.

To calculate changes in welfare we need the expected utilities conditional on city choice, that
is, E(Vijks| choose k and s) = E(maxl,m Vijlm). The CDF of the maximum of an EV random variable
is

F(max
l,m

Vjlm ≤ v) = P(V1a + µj1 + ε1a ≤ v)P(V1m + µj1 + ε1m ≤ v)...P(VJm + µjJ + εJm ≤ v)

= ΠlΠmF(v−Vlm − µjl)

= ΠlΠme−e−v+(Vlm+µjl )

= e−∑l ∑m e−v+(Vlm+µjl )

= e−e−v ∑l ∑m e(Vlm+µjl )

= e−βe−v
,

production is consider as market oriented, but manual work is used as well as a low-level of mechaniza-
tion; and assuming high-level inputs means that production is fully mechanized, low-labor intensive and
applies chemical and nutrients optimally in the field.
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where β = ∑l ∑m e(Vlm+µjl).
The expected value of the max is:

E(max
l,m

Vjlm) =
∫ ∞

−∞
vβe−(v+βe−v)dv

=
∫ ∞

−∞
vβe−ve−βe−v

dv

let t = βe−v

= −
∫ ∞

0
−(ln β− log t)e−tdt

= −
[∫ ∞

0
ln t exp−t dt−

∫ ∞

0
log βe−tdt

]
= γ +

∫ ∞

0
log βe−tdt

= γ + log β

= γ + log ∑
l

∑
m

e(Vlm+µjl),

where γ ≈ 0.577 is the Euler-Mascheroni constant.
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