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Previous studies estimating the effect of the creation of protected areas (PAs) on forest 

conservation suffer from biases due to staggered protection and to unobservable drivers of 

protection’s effectiveness. We address these biases by using a cohort-time refined effect estimator 

in an event study with Amazon Basin data from 2003 to 2020. Which also unveils meaningful 

dynamic patterns that remained so far hidden in previous papers’ aggregate effects. Our findings 

show that PAs’ effects on deforestation and fires were at least halved by the aforementioned 
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behaviour by deforesters, with deforestation becoming larger inside protected land two years 

before protection. This suggests that local agents rush to deforest after learning that the likelihood 

of being sanctioned will rise with protection. A gradual increase of the effect with the ageing of 

PAs confirmed that enforcing protection is subject to learning. Also notably, effects were 

heterogeneous. Whereas both moderately and severely restricted PAs avoided fires, only severely 

restricted avoided deforestation. In addition, whereas neither national nor subnational 

conservation unit PAs have reduced deforestation, national units reduced fires but subnational 

increased them. Indigenous lands reduced deforestation and fires. Results urge policymakers to 

plan the creation of PAs not merely seeking to change the tenure of land but mainly to align 

expectations of deforesters to national conservation goals. 
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1 Introduction 

Protected areas (PAs) have been repeatedly attested to be effective in conserving natural capital, 

especially highly ecologically valuable ecosystems such as forests and wetlands (Sze et al., 2022, 

Shi et al., 2020, Herrera et al., 2019, Wendland et al., 2015, Barnes et al., 2023). They have been 

shown to avoid deforestation, fires, and related carbon emissions, increase bird diversity, and 

reduce poverty (Barnes et al., 2023, Sims, 2010, Ferraro and Hanauer, 2014). The extension of 

protected land has expanded globally by 92% since the 1990s, now embracing 15.4% of Earth’s 

land (Kuempel et al., 2018, Persson et al., 2021). Despite the abundance of PA studies, there are 

two reasons why new investigations are needed. First, from the policy planning perspective, 

whether the cost of protection, measured as forgone income from primary activities, is outweighed 

by ecological benefit, is an empirical question which is highly dependent on local and time-variant 

factors (Persson et al., 2021, Lima and Peralta, 2017). 

Secondly, the methods so far adopted in the estimation of protected areas’ (PAs’) effect are biased 

by staggered creation of PAs over time (across multiple cohorts) and by unobservable drivers of 

PAs’ effectiveness. What may lead to a distorted allocation of public funds for such policy and 

competing policies. Most studies seek to mitigate only the bias from non-random selection of sites 

for protection by relying on matching on observable covariates (Arriagada et al., 2016). This 

approach does not effectively address biases arising from influential non-observables. Factors, 

such as concomitant changes in environmental policy, or local characteristics, are not adequately 

accounted for. This is particularly relevant given that enforcement of deforestation prohibitions 

not coinciding with PAs has intensified from 2004 to 2014 in the Amazon (Assunção et al., 2020, 

Hargrave and Kis-Katos, 2013, Börner et al., 2015). One potential solution is to explore, after 

matching, (“within”) variation across time with a differences-and-differences (DiD) approach, 

thus avoiding unobservable geographical variation sources and explicitly controlling for observed 

policy changes. This approach, which is rarely adopted (exceptions being Shi et al. 2020 and 

Keles et al., 2023), is limited by a second source of bias, the “negative weights” attached 

automatically to PA cohorts by standard DiD estimators, which aggregate all cohorts together, 

irrespective of their potentially heterogeneous effects (Goodman-Bacon, 2019, Callaway and 

Sant’Anna, 2021). Consequently, the causal interpretation of the treatment effect parameter may 

be compromised. 

To address the aforementioned inaccuracies, this paper proposes a new methodological procedure 

to estimate the effect of PAs. It consists in, after the commonly adopted matching approach, 

applying Callaway and Sant’Anna’s (2021) cohort-refined DiD estimator to unveil, with an event 

study, cohorts violating the parallel trends assumption. By removing these cohorts (hereafter also 

called “groups”), the treatment effect estimate obtained is both causal and accurate. By 

incorporating event study and cohort-refined DiD estimation to analysis, we innovatively expand 
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the toolbox of PAs’ effect identification. Furthermore, the challenge of measuring non-PA anti-

deforestation policy efforts is addressed by leveraging publicly available proxies. At last, 

protection performance is measured in terms of two types of forest disturbance, deforestation and 

fires, the latter a source of forest degradation. 

Research has so far largely overlooked the dynamic nature of protection’s effect, especially delays 

and anticipations of changes in outcomes relative to the beginning of protection. This important 

dimension is pioneeringly made visible in this study by introducing a novel econometric technique 

that enables the consideration of non-immediate effects in the planning of PAs. This aspect holds 

great importance as the mere creation of PAs alone is insufficient to ensure effectiveness. 

Systematic enforcement, including on-field patrolling, is needed (Afriyie et al., 2021, Kuempel 

et al., 2018, Geldman et al., 2015). The performance of enforcement is dynamic for being 

contingent on several factors, such as (i) the underlying drivers of the decision to pursue forbidden 

activities, including deforestation and burning, such as agricultural prices (Assunção et al., 2015, 

Hargrave and Kis-Katos, 2013), (ii) the enforcement budget available (Kuempel et al., 2018, 

Jachman, 2008, Silva et al., 2019), and (iii) the process of learning how to enforce protection in 

the particular social-biophysical context of each PA (Geldman et al. 2015, Afriyie et al., 2021, 

Kuempel et al., 2018). 

Therefore, despite being so far presented as instantaneous by econometric studies, protection’s 

effect is dynamic as both the threats facing PAs and the capacity to withstand them oscillate over 

time and may affect different cohorts differently. The knowledge about this dynamics, which is 

available in scattered form across PA studies not necessarily relying on econometrics, is used for 

the first time in this paper to inform estimation and interpretation of protection’s effect. 

Our findings reveal significant biases arising from (i) unobservable heterogeneity not addressed 

by matching, which deflated effect on deforestation in 73%, (ii) staggered protection, which at 

least halved the effect on both deforestation and fires, (iii) non-parallel trends, which deflated in 

39% the effect on fires and (iv) concurrent policy changes, which deflated the effect on 

deforestation in 13% and inflated the effect on fires in 16%. After removing these biases, 

protection proved doubtlessly effective. Additionally, it was particularly noteworthy the strong 

evidence of an increase in deforestation occurring two years before PA creation, which is 

consistent with forward-looking behaviour by illegal deforesters. These agents, anticipating that 

the probability of being sanctioned for illegal deforestation will rise in the post-protection period, 

“rush” to deforest in the pre-protection period (a behaviour evidenced by Temudo, 2012, and 

Pedlowsky et al., 1999). 

Additionally, we observed heterogeneous effects across PA types, both aggregating or not across 

cohorts. Conservation units, which are managed either by national or subnational governments 
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and do not necessarily ban farming, experienced more deforestation than unprotected land in six 

years of the pre-protection period, including the aforementioned rise two years before protection. 

Such type of event occurred only once in indigenous lands, whose utilization is constrained to 

traditional peoples’ practices. Importantly, the event arose approximately when the lengthy 

process of indigenous lands’ creation generally starts and was reverted in the subsequent year to 

a deforestation level below that of unprotected lands. Which may be another evidence of forward-

looking behaviour, with an initial forest rush aborted after learning that governmental presence 

had already increased locally. Consistently with the specific dynamic patterns of the different PA 

types, only indigenous lands presented an unambiguously aggregate negative impact on 

deforestation. These lands also inhibited fires, which was also true for conservation units, despite 

subnational ones, where fires were more frequent than in unprotected land. Severely restrictive 

protected areas were more effective in avoiding the two types of forest disturbance. A final 

dynamic pattern worth mentioning is the gradual increase in deforestation and fire inhibition 

effect across PA’s lifetime, confirming that enforcement is subjected to gains from learning. 

Our research thus makes significant contributions to the literature evaluating the impact of PAs 

(e.g., Pfaff et al., 2015, Herrera et al., 2019, Wendland et al., 2015, Shi et al., 2020, Keles et al., 

2023). We address critical sources of bias that have not been comprehensively considered in 

previous studies measuring PAs’ effects. Specifically, we update the standard methodology with 

recent discoveries about the inaccuracies introduced by an homogeneizing aggregation of 

heterogeneous treatment cohorts (Goodman-Bacon, 2019, Roth, 2022, Callaway and Sant’Anna, 

2021). The resort to Callaway and Sant’Anna’s (2021) cohort-refined estimator not only mitigate 

biases, but also reveals dynamic patterns that were hidden in the aggregate effects reported by 

previous studies. These patterns are both consistent with a forward-looking theory of deforesters’ 

behaviour, as we demonstrate, and highly relevant for planning PAs’ implementation. They shed 

light on the evolution of protection's influence on deforestation. To the best of our knowledge, no 

other research has empirically investigated delays and anticipations associated with the creation 

of PAs5. 

The next section summarizes extant knowledge about the dynamics of protection’s effect, 

presenting a theoretical model demonstrating that forward-looking behaviour is a 

microfoundation of protection’s effect dynamics. Methods follow and results are then presented. 

They are confronted with previous studies in the discussion section. A short conclusion section 

closes the paper. 

 
5 Despite, perhaps, Keles et al. (2023), but with the important difference that authors’ treatment is not the 

creation of PAs, but their downgrading, downsizing or degazettement. 
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2 Literature and theory 

2.1 Literature review on the dynamics of protection’s effect 
The knowledge in the extant literature about the temporal patterns of protections’ effect may be 

summarized into four types of dynamics, combining two dichotomous dimensions, namely: (1) 

timing relative to protection outset, i.e., either (1.a) pre-protection or (1.b) post-protection and (2) 

direction of effect, which is either (2.a) positive or (2.b) negative (figure 1). 

Figure 1 Four types of dynamic effects, post-protection decay (a), pre-protection 

decay (b), post-protection rise (c) and pre-protection rise (d). 

 

The study of the dynamics of protection’s effect is challenged by two main sources of bias. First, 

untreated pixels are not all of them comparable to the treated. Second, standard aggregation of 

cohorts of treated pixels may automatically attach negative weights to some cohorts. These issues 

prevent the observation, in the raw data, of the types of dynamics here defined. Besides, these are 

“ideal types” which are less likely to be observed in pure form rather than mixed. Nevertheless, 

as detailed in the next paragraphs, it is coherent with previous studies to believe that the four types 

of effect dynamics may manifest as part of the process through which protected areas inhibit 

deforestation.  

Inspired in literature, this paper relied on a simple conceptualization of the deforestation-

protection nexus. It involves two agents, the policy-makers creating and enforcing PAs and the 

deforesters, who are standardly assumed to rationally balance agricultural profitability and 
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financial gains from land appropriation and losses from sanctions (in line with Angelsen, 1999, 

Hargrave and Kis-Katos, 2013, Börner et al., 2015). It is further assumed that deforesters are 

forward-looking, predicting both agricultural prices and the future likelihood of sanction 

(similarly as in Pfaff et al., 2007). Then it is coherent to conclude that they optimally select the 

period to deforest as the one yielding the best balance, i.e., the largest expected agricultural 

income net of expected sanction cost. This cost, or, more precisely, sanctioning likelihood, should 

be larger in protected land because deforestation is generally forbidden and tenure ambiguity, 

which could prevent or delay sanctioning, is not an issue. Therefore, the link between protection 

and deforestation is in that the latter counter-incentivizes the former. This also apply to fires, 

which are strongly associated with deforestation (Morello et al., 2019). 

Now turning to specific types of dynamics, a negative post-protection effect refers to the absence 

of effect in the first year of protection and the presence of a negative effect in subsequent years. 

This dynamics could be attributed to the gradual improvement of PA enforcement performance, 

as staff takes time to learn how to optimize patrolling in the specific set of biophysical and social 

conditions faced, which, according to Geldman et al. (2015), is in line with management theory 

(see also Afriyie et al., 2021). Also, PAs performance was found to improve over time (Geldman 

et al., 2015, Paiva et al., 2015). Deforesters may take advantage of initial enforcement caveats to 

keep their activity. Even if it may sound unreasonable the act of continuing to deforest a land 

which, after protection, became doubtlessly a property of the State, this impression falls apart 

when evidence on land speculation inside PAs and on the gains it generates, are brought to the 

fore (see Klinger and Mack, 2020, Bowman et al., 2021 and Carrero et al., 2022). 

A positive delayed effect may result from lower enforcement inside rather than outside protected 

areas, which pushes deforestation towards PAs. This dynamics is even more likely if the budget 

invested in PAs is mainly used for their establishment (e.g., to indemnify expropriations), whereas 

the budget invested outside of PAs flows mainly to enforcement (Kuempel et al., 2018, Nolte et 

al., 2013). Moreover, budget managers may implicitly assume that protected land is less exposed 

to threats than unprotected, with enforcement prioritizing the latter (as noticed by Kuempel et al., 

2018). Another reason, which is driven by the political cycle, is the loss of credibility of particular 

PAs, including those that are at risk of being degazetted or downsized (Keles et al., 2023, Kingler 

and Mack, 2020, Carrero et al., 2022). This tenure ambiguity may be more profitable to 

deforesters than the unambiguity of particular unprotected public lands. For instance, Carrero et 

al. (2022, figure 3), found fractions of self-declared private properties overlapping with protected 

areas that were larger than those overlapping with agrarian settlements and military areas. Local 

land users may also increase deforestation and other forms of natural resource degradation inside 
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PAs whose creation defied their interests, as a form of contestation (Debelo, 2012, Holmes, 

20146). 

Now turning to changes occurring before protection, the literature is much less informative about 

them. Anticipated response of deforesters, or other resource users, to the restrictions imposed by 

protection, are infrequently mentioned, despite being fully consistent with the assumption of 

forward-looking agents. A drop in deforestation before protection, i.e., a negative pre-protection 

effect, may be motivated by deforesters revising their expectations of enforcement upwards after 

learning that a land area is to be protected. Indeed, governmental presence increases right since 

anthropological and ecological studies start being undertaken as means to inform the creation 

decision7. Keles et al. (2023, fig.7) indeed found negative ex-ante effects of protection in 

particular Amazonian locations (such as Pará state). Pre-protection effects may be also positive. 

The future protection of a land parcel could trigger its deforestation in the present, since protection 

increases the likelihood of sanction but not agricultural (or land) value. A first example is the 

“forest rush” induced by the prospect of creating a new PA in Guinea-Bissau, which led local 

traditional people to believe their land rights would be revoked (Temudo, 2012). They reacted in 

advance by resorting to many strategies to secure forest land, such as thinning forest canopy to 

plant market-value trees and replacing forest with orchards. Protest slashing-and-burning took 

place in a more advanced (and heated) stage of protection contestation (Temudo, 2012). A second 

example, reported by Pedlowsky et al. (1999), is the “rush for land” in the Brazilian state of 

Rondônia, triggered by the announcement of conservation units’ creation, which was slowly 

implemented. A third example of an anticipated response to PA creation that (could have) raised 

environmental degradation is found in Baragwhanath and Bayi (2020). The authors make clear 

that contestation of indigenous lands, including invasion by non-indigenous resource users and 

deforesters, is possible up until the fourth and final phase of the creation process, which takes ten 

years and half in average to be achieved (FUNAI, 2023). 

2.2 Theory 

2.2.1 Assumptions 
A dynamic-stochastic general equilibrium model was developed as means to generate the four 

types of dynamics from solid theoretical foundations. A standard RBC model was expanded to 

include deforestation as an investment on land, an asset which competed with fixed capital for 

savings. The household (HH), the sole asset owner in the economy, maximized the standard 

CRRA instantaneous utility function below (which is adopted by Lucas, 1999 and King, Plosser 

and Rebelo, 1988): 

𝑢(𝑐𝑡, 𝑙𝑡
𝑠) =

𝑐𝑡
(1−𝜂)𝜇(1 − 𝑙𝑡

𝑠)(1−𝜂)(1−𝜇)

1 − 𝜂
 

Where consumption and hours laboured are denoted by ct and lt, total time available is normalized 

to one, relative risk aversion coefficient is η and utility’s consumption elasticity is μ. All quantity 

 
6 In the case study of Holmes (2014), peasants set fires near the borders of a PA as means to contest it. 
7 Conservation units and indigenous lands go through, respectively, two and five stages involving State 

presence, to be legally created (Brazil, 9985/2000 and 1775/1996, FUNAI, 2023). During the pre-creation 

assessment studies, agricultural, extractive and other activities may be forbidden and non-indigenous people 

re-settled outside (Brazil, 9985/2000 and 1775/1996). 
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variables are specified in per capita terms, population growth is ignored and the price of goods is 

the numerárie. 

The budget constraint has, on the income side, the earnings from labouring (wtlt), from renting 

capital (rtkt) and land (stat), augmented by cash transfer received (tt). Expenditures comprise, 

besides consumption, investment (it) and the total cost of deforestation, denoted as (𝑚0 +

𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡)𝑑𝑡. That is: 

𝑤𝑡𝑙𝑡
𝑠 + 𝑟𝑡𝑘𝑡

𝑠 + 𝑠𝑡𝑎𝑡
𝑠 + 𝑡𝑡 = 𝑐𝑡 + 𝑖𝑡 + (𝑚0 + 𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡)𝑑𝑡 

The deforestation cost unfolds, firstly, into a direct cost, 𝑚0𝑑𝑡, which covers the inputs required 

by the operation. Secondly, there is the expected fine. It is assumed that any positive level of 

deforestation inside a PA is liable for a penalty of 𝜃 monetary units per hectare, which, due to 

imperfect enforcement, has probability σ of being imposed. Deforestation outside PAs is free of 

penalty. The remaining components of the expected fine α𝑃𝐴 and γ𝑃𝐴,𝑡, come from the following 

calculation referring to the extent of deforestation occurring in protected areas, dPA,t: 

d𝑃𝐴,𝑡 =
d𝑃𝐴,𝑡

d𝑡

d𝑡 = α𝑃𝐴,𝑡γ
𝑃𝐴,𝑡

d𝑡 

Where γPA,t is the percentage of total forestland that is protected (
F𝑃𝐴,𝑡

F𝑡
) and αPA,t is a constant of 

proportionality connecting the shares of protected area in deforestation and in total forest area, 

i.e., 
D𝑃𝐴,𝑡

D𝑡

F𝑃𝐴,𝑡

F𝑡
⁄ = α𝑃𝐴,𝑡 (capital letters are used for non-percapita totals; it is considered that ratios 

involving them are equal to ratio involving their per-capita values). For simplicity, α𝑃𝐴,𝑡 is 

assumed fixed and exogenous in simulations. 

The land suitable to be used as a production factor, at, grows with deforestation and shrinks with 

physical depreciation at a rate ψ, that is: 

𝑎𝑡
𝑠 = (1 − 𝜓)𝑎𝑡−1

𝑠 + 𝑑𝑡−1 

Incorporating the law of motion of capital, the HH problem is: 

max{𝑐𝑡,𝑙𝑡,𝑖𝑡,𝑑𝑡,𝑘𝑡,𝑎𝑡}E0 {∑ 𝛽𝑡

𝑇

𝑡=1

[
𝑐𝑡

(1−𝜂)𝜇
(1 − 𝑙𝑡

𝑠
)

(1−𝜂)(1−𝜇)

1 − 𝜂

+ 𝜆𝑏𝑐,𝑡[𝑤𝑡𝑙𝑡
𝑠 + 𝑟𝑡𝑘𝑡

𝑠 + 𝑠𝑡𝑎𝑡
𝑠 + 𝑡𝑡 − 𝑐𝑡 − 𝑖𝑡 − (𝑚0 + 𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡)𝑑𝑡]

+ 𝜆𝐾,𝑡[(1 − 𝛿)𝑘𝑡−1
𝑠 + 𝑖𝑡−1 − 𝑘𝑡

𝑠] + 𝜆𝐴,𝑡[(1 − 𝜓)𝑎𝑡−1
𝑠 + 𝑑𝑡−1 − 𝑎𝑡

𝑠]]  } 

The representative firm operates a Cobb-Douglas function including capital, labour and land, 

thus solving the following problem: 

max{𝐾𝑔𝑡
𝑑 , 𝐿𝑔𝑡

𝑑 , 𝐴𝑡
𝑑} {𝐽𝑡𝐾𝑡

𝑑𝛼
𝐿𝑡

𝑑𝛽
𝐴𝑡

𝑑1−𝛼−𝛽
− 𝑟𝑡𝐾𝑡

𝑑 − 𝑤𝑡𝐿𝑡
𝑑 − 𝑠𝑡𝐴𝑡

𝑑} 
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Where Jt is the total factor productivity (TFP), a stochastic variable, and factor demands are K, 

L and A. With N denoting population level, factors’ and good’s markets clear: 

𝐾𝑡
𝑑 = 𝑘𝑡

𝑠. 𝑁, 𝐿𝑡
𝑑 = 𝑙𝑡

𝑠. 𝑁, 𝐴𝑡
𝑑 = 𝑎𝑡

𝑠. 𝑁 

𝐾𝑡
𝑑𝛼

𝐿𝑡
𝑑𝛽

𝐴𝑡
𝑑1−𝛼−𝛽

=  (𝑐𝑡 + 𝑘𝑡+1 − (1 − 𝛿)𝑘𝑡 + 𝑚0𝑑𝑡)𝑁 

Government budget, which does not contain consumption nor taxation, is always balanced, that 

is: 

𝑡𝑡. 𝑁 = (𝜎. 𝜃. α𝑃𝐴γ
𝑃𝐴,𝑡

d𝑡). 𝑁 

2.2.2 Simulations 
The steady state of the model was calibrated to a set of parameters meant to be as general as 

possible – data sources are found in appendix 3, which also contains the equations of the dynamic 

system. By abstracting TFP shocks, we simulated the effect of PA creation with a deterministic 

shock on the extent of land protected, γ𝑃𝐴,𝑡. The shock was fully known by the forward-looking 

household. With 20 periods of simulation and a one percentage point shock introduced from the 

10th to the 20th period, the main result was the “forest rush” effect of an increase in deforestation 

in the 9th period, with a decrease from then on (figure 2). This response can be interpreted as a 

way to smooth out the level of land, a valuable asset, across time. Thus both the pre-protection 

rise and post-protection decay dynamic effects were confirmed to be consistent with forward-

looking behaviour. The economy does not return to the pre-shock steady state, but to a new steady 

state of lower consumption and output, which is reasonable since endogenous HH income was 

reduced (despite exogenous income was increased through a greater cash transfer). 

A second experiment applied a pulse shock in the share of forest protected and there were two 

differences. First, deforestation increased above the steady state level one period after the shock, 

a post-protection positive effect, which lasted eight periods (figure 3). In the previous simulation, 

deforestation remained below the steady state in all post-shock periods. This shows that if the HH 

expects PA creation to be reverted (pulse shock case), it will keep deforestation above the pre-

creation level temporarily, while fine probability decays (which is line with the empirical 

evidence about PA erasure compiled by Keles et al., 2023). The second difference, which was 

expected, was the return of deforestation and the economy to the steady state, given the pulse 

nature of the shock – judging from percent differences based on pre-shock levels with a four 

decimal digit precision. 
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Figure 2 Permanent shock (impulse-response functions) 

 

Note: “gama” is the shocked variable, “T” is cash transfer and y1 is the GDP per capita. 

Figure 3 Pulse shock (impulse-response functions) 

 

2.2.3 ATT deflation and inflation due to concurrent policies 
Besides protection, other concurrent environmental policies curbing deforestation and fires take 

place in the Amazon. Intensification of forest law enforcement in non-protected government 

owned-lands is a key example. A crucial point is that, even not taking place in PAs, they may 

spill-over to PAs, also through a expectation formation mechanism, due to increased perception 

of state presence. Failure to control for these policies may either inflate or deflate the effect of 

PAs: 

1. There is deflation if non-PA policies reduce forest disturbance more intensively outside 

rather than inside PAs (figure 4, chart 2). I.e., if lowering disturbance in the control group 

in a larger magnitude (after controlling, ATT should increase in absolute magnitude). 
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Putting alternatively, in this case other policies and protection are forces acting upon 

pixels with different treatment statuses;  

2. There is inflation if non-PA policies decrease forest disturbance more intensively inside 

rather than outside PAs (that is, the indirect spill-over effect must be larger than the direct 

effect; figure 4, chart 3). I.e., when they diminish disturbance in the treated group in a 

larger magnitude (after controlling, ATT should decrease). In this case, protection and 

other policies both act upon treated pixels (they are forces that add up to each other). 

Figure 4  Deflation and inflation by non-PA policies (control = black, treated 

= grey) 

 

3 Empirical method and data 

3.1 Identification strategy 

The goal is to estimate the causal effect of protected areas (PAs) on deforestation, which is given 

by coefficient β in the equation below. The binary variable taking value one if the i-th pixel is 

protected in the t-th year, and null value otherwise, is denoted as “PA” and covariates are 

subsumed to vector X. The dependent variables are also binary and indicate whether deforestation 

or fires were detected inside the pixel. 

Deforestationit / Firesit = γ + βPAit + XitΓ + ai + λt + uit, i = 1,…,N, t = 2003,...,2020 

Three main identification challenges are faced, (i) self-selection of the i-th site to be protected, 

(ii) potential confounding factors from omitted concurrent changes and (iii) staggered creation of 

PAs over time, which may lead to heterogeneous effects. To mitigate associated biases, matching 

was used in the first step to increase balance and the common extent of support between treated 

and untreated (control) observations. Secondly, we implement the group-time differences-in-

differences approach developed by Callaway and Sant’Anna (2021) using covariates and fixed 

effects to estimate the average treatment effect on the treated (ATT). This two-step approach 

allows us to deal with self-selection on covariates and time-invariant unobservables, as well as to 

1.Actual (PA effect 

only)

2.Deflation by non-

PA policy

3.Inflation by non-

PA policy
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accurately calculate the average effect of PAs by appropriately accounting for group (cohort) 

heterogeneities. 

One-to-one covariate matching on Mahalanobis distance (dij) was pursued with replacement, as 

imprecisely represented by the equation below, with Z being a covariate vector with the same 

variables of X and some more (Morgan and Winship, 2007, chap.4, StataCorp, 2013). 

PAi = α + ZiΠ + ei, i = 1,…,N, t = 2003 

𝑑𝑖𝑗 = {(𝑍1 − 𝑍0)′𝑉𝑁𝑥𝑁
−1  (𝑍1 − 𝑍0)}

1
2 

In which the covariate values for treated and control groups are denoted by Z1 and Z0, respectively, 

and V is Z’s sample variance-covariance matrix. 

Matching was performed using data from the first year of the dataset, 2003, in order to minimize 

the contamination of untreated pixels by the treated. The treated group consisted in all pixels 

protected in some year of the analysis period whereas the control group contained only the never-

protected. Since the covariate vectors for deforestation and fires differed, given that only in the 

latter case deforestation was included, matching was separately implemented for each dependent 

variable. Based on the matching approach, we removed (i) controls not sufficiently comparable 

to the treated and (ii) treated pixels that could not find sufficiently comparable controls. The 

exclusion of treated observations relied on a one standard deviation (SD) caliper for each and all 

covariates (similar as in Arriagada et al., 2016 and Wendland et al., 2015)8.  

After restricting the sample to comparable pixels, we proceeded with the DiD-based ATT 

estimand developed by Callaway and Sant’Anna (2021) which was based on the outcome 

regression specification. The group-time estimates were aggregated at exposure-length level, in 

order for an event study to be carried out as means to pre-test the parallel trends assumption 

ensuring identification. Aggregation at whole-sample level generated an overall effect which was 

compared with standard DiD estimates, revealing the size of the bias due to the negative weights 

attached to group-time estimates automatically by standard DiD – all aggregations were based in 

Callaway and Sant’Anna’s formulas (2021). 

As means to ensure that the parallel trends assumption was met, a sufficient condition for causal 

effect identification, it was necessary to exclude groups causing violations. These are hereafter 

referred to as “critical groups”, and understood as those whose group-time ATTs both belonged 

to significant pre-treatment exposure lengths and were, themselves, significant. These exclusions 

were step-wisely implemented, whenever a previous round of group removal was not enough to 

 
8 A half SD caliper was also considered as an alternative (and more rigorous) option. But since the matching 

quality gain it brought per unit of observation excluded was substantially smaller than the one yielded by 

the one SD caliper, only results generated by the latter are reported. Additionally, the sample size reduction 

the half SD caliper entailed was great enough to prevent generation of the group-time estimates. 
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drive all pre-treatment effects null9. The event study estimates, more precisely, the significance 

of pre-treatment effects, re-generated at each round, guided the operation. 

Two-way fixed-effects DiD regressions (DID-FE) were also run as baseline for calculating the 

“staggered protection” bias, which is due to cohort-level heterogeneous ATTs being aggregated 

in an overall effect measure (which could lead to the negative weights bias referred to by 

Goodman-Bacon, 2018). 

The robustness of the “critical groups” approach to group selection was assessed by comparing 

the associated overall ATTs with those generated by an alternative group selection approach based 

on Goodman-Bacon’s (2018) decomposition. It revealed the weights in the standard two-way 

fixed-effects estimates of each binary comparison between never-treated and a specific cohort 

group, showing which cohorts were the top five in weight – these comparisons, in which strictly 

the never treated are taken as untreated units, were focussed in consistency with the matching 

convention of including only never-treated pixels in the control group. Three matched subsamples 

were the object of the robustness test: (i) whole Amazon Basin, (ii) only the Brazilian fraction of 

the Basin, without institutional covariates and (iii) Brazilian fraction with institutional covariates. 

In all these three, the top five cohorts in weight represented at least 66% of the total weight10, 

which is a major share of the variation identifying ATT. Even with Goodman-Bacon’s (2018) 

decomposition implemented separately in each subsample vs. dependent variable combination, it 

pointed, in all of them, to the same top five cohorts, namely, 2005, 2006, 2008, 2009 and 2016. 

Considering only these cohorts, Callaway and Sant’Anna’s (2021) estimator was then ran for all 

six combinations. 

3.2 Data 

3.2.1 Covariates 

Eight “subsamples” were analyzed, all of them at the geographical scale of 25 km2 pixels and at 

the annual time scale from 2003 to 2020. The first sample covered the entire Amazon Basin, 

delimited accordingly with hydrological and ecological criteria (see Eva and Huber, 2005). It 

overlaps, at least partially, the territories of nine South-American countries, with Brazil occupying 

about 60% of the whole region. The second sample contained solely the Brazilian portion of the 

Basin (hereafter referred to as “Brazilian Amazon” for simplicity11). It was the only part of the 

Amazon Basin for which environmental policy data was available as means to explicitly control 

 
9 At most three rounds were required in all cases, with fires requiring mostly two rounds (five of the eight 

subsamples considered) and deforestation requiring mostly three rounds (four of the eight subsamples). 
10 This share was above 75% for four of the six combinations. 
11 We highlight that the fraction of the Amazonian Basin falling in the Brazilian territory does not coincide 

with the two more commonly adopted geographical delimitations of the Brazilian Amazon, which are either 

of ecological or legal nature (being termed “Brazilian Amazon biome” and “Legal Brazilian Amazon”). 
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for concurrent policy changes. Abusing the meaning of “sample”, what is here referred to as the 

third “subsample”, also captured only Brazil, but included institutional covariates proxying non-

protection policies implemented simultaneously with protection. In order to measure the effect of 

specific types of PAs, a common practice in the literature (Herrera et al., 2019, Amin et al., 2019), 

five additional subsamples included only treated pixels belonging to a specific PA type. Whereas 

the first two types corresponded to conservation units, either managed by national or subnational 

governments, the third type corresponded to indigenous lands. The last two subsamples also 

referred to conservation units, but grouped according with two levels of severity of protection 

constraints. First, units permitting only indirect resource use (where only ecological management 

and tourism are allowed), and those permitting direct use, i.e., extraction and (limited) removal 

of vegetation cover by inhabitants. These five different territories may exhibit specific protection 

effect dynamics given their particular constraints to natural resource exploitation and land usage, 

as well as the different agencies responsible for their management (Amin et al.,2019, Qin et 

al.,2023, Carrero et al.,2022). 

The covariates based on which pixels were matched (vector “Z”) belonged to three classes: (1) 

meteorological (temperature, precipitation and maximum cumulative water deficit), (2) land use 

and land cover (extent of farming, of forest and other natural landscapes, forest fragmentation 

and, in the case of fires, deforestation of primary and secondary vegetation), and (3) land 

profitability (distance to roads, rivers, populated areas and urban zones, population, terrain's 

elevation and slope and soil quality). All these variables were geoprocessed and aggregated to 

pixel-year level. 

The post-matching DID estimation included the time-variant subset of the matching variables, 

Xit, in order to compensate for the static nature of matching (in line with Goodman-Bacon’s 

(2018) statement that time-variant covariates attenuate staggered treatment bias). In addition, one 

of the “subsamples” contained three institutional variables explicitly controlling for 

environmental policy changes. These variables were municipal expenditure on environmental 

governance, area of properties embargoed due to illegal deforestation, and distance to the nearest 

environmental police headquarters (FINBRA, 2023, IBAMA, 2023a and 2023b). The first two 

variables were available only at the municipal level, and since all the three variables were time-

invariant, they were interacted with a time trend to prevent elimination by the fixed-effects 

estimator - the three institutional covariates were available only for Brazil. 

3.2.2 Sample reduction 

The population variable exhibited great discrepancy between protected and non-protected pixels, 

with a large standard deviation in the second group (coefficient of variation = 16). Because of 

that, outlier pixels in population were eliminated from analysis before matching (which reduced 
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fourfold the population's variable coefficient of variation). These pixels, whose population level 

was above the 99th percentile of the whole dataset (1,297 inhabitants/25 km2 by 2003), were 

either urban or considerably closer to urban zones - 20% of them were at zero distance from urban 

towns, a percentage which was of 0.1% for non-outlier pixels; in addition, distance to urban towns 

was, among outlier pixels, statistically smaller in average (p-value < 0.01%). Outlier population 

pixels were thus unlikely to give place to deforestation, so that keeping them could contribute to 

an underestimation of the treatment effect. 

Before matching, and in accordance with Callaway and Sant’Anna (2021, footnote 2), pixels 

treated before the second year of analysis (2004) were dropped, along with outlier pixels (details 

provided in section 3.2.2 below) – thus ensuring that all treated pixels were observed also in their 

pre-treatment state. 

4 Results 

4.1 Main effects12 

Tables 1 and 2 show the average treatment effect on the treated (ATT), estimated by multiple 

approaches (columns (1) to (7)), for deforestation and fires. Starting with the former, in the 

matched subsamples13, three violations of parallel trends assumption, in the form of significant 

pre-treatment effects, were observed in the event studies. These occurred at exposure lengths of -

15, -9 and -2 years, the first two displaying significant negative effects and the last one showing 

a positive effect (Appendix 2, figure A.2.1.1) - lag -9 was not significant in the unmatched sample. 

To address the issue, we excluded the critical groups, namely 2006, 2013, 2016 and 2019, thus 

ensuring parallel trends. 

In the unmatched sample, the overall ATT was of -0.0236, while in the matched sample, with and 

without the 1 SD caliper, it was larger in absolute magnitude, of -0.0294 and -0.0278 (table 1). 

But in the case in which the parallel trends assumption was met, i.e., without the critical groups, 

the ATT was of -0.025, showing that failure to meet the assumption was biasing upwards in 11%, 

in absolute value terms, the estimate (table 5). This last estimate was over twice as large, in 

module, as those with DiD-FE regressions, revealing that the negative weights bias, coupled with 

non-parallel trends, diminished the absolute size of the ATT (table 1). 

[Main effects: fires] Fires were similarly subjected to parallel trends violations (in lags -11,-10, -

6, -4, -1), which biased ATT downwards in 39% (Tables 2 and 5). Both the failure to match and 

 
12 Results based on the half SD caliper are omitted. The results reported are based on the 1 SD caliper, 

which achieved a satisfactory balance between matching quality and sample size (see Appendix 2). 

13 An assessment of matching quality is provided in Appendix 1. 
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the lack of a post-matching analysis deflated ATT, with non-staggered post-matching deflating 

further (table 5). 

[Confounding policies] With the institutional variables that were available only for Brazil, 13% 

larger and 16% smaller ATTs were estimated for deforestation and fires, respectively (tables 2 

and 5), compared with a Brazilian subsample without institutional covariates. Therefore, 

concurrent non-PA policies decreased deforestation more largely outside PAs, whereas they 

decreased fires more intensely inside PAs. 

[Heterogeneity] Regarding ATT heterogeneity, only indigenous lands and a specific type of 

conservation unit, the most severely restrictive one (indirect use) were effective in preventing 

deforestation. Indigenous lands were slightly more effective, with an estimate closer to that for 

whole-PAs’ effect than severely restrictive conservation units. A different pattern was observed 

for fires, which were blocked by indigenous lands and national conservation units. But 

subnational units unexpectedly presented a higher internal fire frequency than unprotected land. 

Units differing on degree of protection stringency were all effective, but again the most restrictive 

were most effective. 

Table 1  Effect of PAs on deforestation using several approaches: DiD-FE and group-

time estimates 

 

  

(1) (2) (3) Group-time 

Matching 

only 
DiD DiD-FE (4) (5) (6) (7) 

      
Unmatched, 

all groups 

Matched, 

no caliper, 

all groups 

Matched, 

1 SD 

caliper, 

all groups 

Matched, 1 

SD caliper, 

only non 

sig.pre-

treat.groups 

Average 

treatment 

effect on 

the treated 

(ATT) 

-0.0067*** 
-

0.0124*** 

-

0.0124*** 
-0.0236* -0.0294* -0.0278* -0.025* 

  (0.0013) [0.0017] [0.0016] [0.0019] [0.003] [0.0032] [0.0037] 

              
 

N 
         

594,702  
594,702 594,702 2,235,996 725,724 594,702 415,080 

N clusters  NA  33,039 33,039 124,222 40,318 33,039 23,060 

 

Table 2  Effect of PAs on fire using different approaches: DiD-FE and group-time 

estimates 

  (1) (2) (3) Group-time 
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Matching 

only 
DiD DiD-FE (4) (5) (6) (7) 

      
Unmatched, 

all groups 

Matched, no 

caliper, all 

groups 

Matched, 1 

SD caliper, 

all groups 

Matched, 1 

SD caliper, 

only non 

sig.pre-

treat.groups 

Average 

treatment 

effect on 

the treated 

(ATT) 

-0.0575*** 
-

0.0052*** 

-

0.0052*** 
-0.0153*** -0.0360*** -0.0369*** -0.0601*** 

  [0.0008] [0.0012] [0.0011] [0.0014] [0.0026] [0.00291] [0.0073] 

             

N 
         

592,380  

      

592,380  

      

592,380  
2,235,996 726,048 592,380       209,628  

N clusters  NA  
        

32,910  

        

32,910  
124,222 40,336 32,910         11,646  
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Table 3  Effect of PAs on deforestation: Brazilian Amazon and PA-types’ samples, 

group-time estimates after exclusion of critical groups 

  

(1) (2) (3) (4) (5) (6) (7) (8) 

All 

protected 

areas, 

without 

institution

al 

covariates

, Amazon 

Basin 

All 

protected 

areas, 

without 

institution

al 

covariates

, Brazilian 

Amazon 

All 

protected 

areas, 

with 

institution

al 

covariates

, Brazilian 

Amazon 

Only 

indigeno

us lands, 

Amazon 

Basin 

Only 

subnationa

l 

conservati

on units, 

Amazon 

Basin 

Only 

national 

conservati

on units, 

Amazon 

Basin 

Only 

indirect 

conservati

on units, 

Amazon 

Basin 

Only 

direct 

conservati

on units, 

Amazon 

Basin 

                

ATT -0.025* 
-

0.0279*** 

-

0.0321*** 

-

0.0243**

* 

0.0022 -0.0113 -0.0227*  -0.0028 

  [0.0037] [0.0068] [0.0053] [0.0066] [0.0095] [0.0071] [0.0093] [0.0059] 

                  

N 415,080 145,224 241,074 106,830 57,762 88,038 
          

84,366  

         

141,948  

N 

clusters 
23,060 8,068 13,393 5,935 3,209 4,891 

            

4,687  

            

7,886  

 

Table 4 Effect of PAs on fire: Brazilian Amazon and PAs types’ samples, group-time estimates 

after exclusion of critical groups 

  

(1) (2) (3) (4) (5) (6) (7) (8) 

 All 

protected 

areas, 

without 

institutio

nal 

covariate

s, 

Amazon 

Basin  

 All 

protected 

areas, 

without 

institutional 

covariates, 

Brazilian 

Amazon  

 All 

protected 

areas, with 

institutional 

covariates, 

Brazilian 

Amazon  

 Only 

indigeno

us lands, 

Amazon 

Basin  

 Only 

subnation

al 

conservati

on units, 

Amazon 

Basin  

 Only 

national 

conservati

on units, 

Amazon 

Basin  

 Only 

indirect 

conservati

on units, 

Amazon 

Basin  

 Only 

direct 

conservati

on units, 

Amazon 

Basin  

                

ATT 
 -

0.0601***  
 -0.0624***    -0.0538***  

 -

0.0352**

*  

 0.0323***  
 -

0.0552***  

 -

0.0499***  

 -

0.0318***  

   [0.0073]   [0.0096]   [0.0065]   [0.0049]   [0.0076]   [0.0065]   [0.0053]   [0.0067]  

                  

N 
            

209,628  

            

201,546  

            

201,546  

            

119,052  

              

89,028  

              

99,414  

            

107,802  

            

203,994  

N 

clusters 

              

11,646  

            

148,914  

            

201,546  

                

6,614  

                

4,946  

                

5,523  

                

5,989  

              

11,333  

 

 

 



19 
 

Table 5 Four biases in naïve estimation (relative [and absolute] calculation) 

  Deforestation Fires 

"Matching alone" bias -73 % [-1.84%] -4 % [-0.26%] 

Staggered protection bias -50 % [-1.26%] -91 % [-5.49%] 

Unparalleled trends bias 11 % [0.28%] -39 % [-2.32%] 

Concurrent policy bias -13 % [-0.42%] 16 % [0.86%] 

Note: relative bias is calculated as biased/unbiased – 1, that is, as the percentage in which biased absolute 

estimate exceeds the unbiased absolute estimate. Consistently, absolute bias was calculated as biased – 

unbiased. 

 

4.2 Robustness test 

Regarding deforestation, robustness was achieved both in sign and magnitude of estimates, the 

latter differing in no more than 14%. This is shown in table 6, which compares critical cohort 

exclusion with the inclusion of top-five cohorts in the weights obtained as part of Goodman-

Bacon’s (2018) decomposition. Nevertheless, in the case of fires (table 7), robustness restricted 

to estimates’ sign, due to magnitude discrepancies of at least 40%, which suggested inflation of 

effect’s size. Therefore, it is cautious to expect, in practice, lower effects on fires than those shown 

in the previous tables. 

Furthermore, the direction of change in effects after controlling for concurrent policies was also 

robust, for the two dependent variables, with increase and decrease of the effects on deforestation 

and fires, respectively. But the smaller size of change, for the two outcomes, is also noteworthy. 

Table 6  Robustness test, deforestation 

  

(1) (2)   (3) (4)   (5) (6)   

All PAs   Only Brazilian PAs 
Only Brazilian PAs with inst. 

var. 

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(2)/(1) 

-1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 Percent 

diff 

[(4)/(3) -

1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 Percent 

diff 

[(6)/(5) -

1]  

                  

ATT -0.025* 
-

0.0255*** 
2% 

-

0.0279*** 
-0.0319*** 14% 

-

0.0321*** 
-0.0342** 7% 

 [0.0037] [0.0037]  [0.0068] [0.0045]  [0.0053] [0.0046]  

                    

N 415,080 431,550   145,224       349,776   241,074       349,776   

N clusters 23,060 23,975   8,068         19,432    13,393         19,432    

 

 

 

Table 7  Robustness test, fires 



20 
 

  

(1) (2)   (3) (4)   (5) (6)   

All PAs   Only Brazilian PAs 
Only Brazilian PAs with inst. 

var. 

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(2)/(1) 

-1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(4)/(3) 

-1]  

 Critical 

groups  

 Top-five 

weights 

(rob.)  

 

Percent 

diff 

[(6)/(5) 

-1]  

                  

ATT 
-

0.0601*** 

-

0.0273*** 
-55% 

-

0.0624*** 

-

0.0338*** 
-46% 

-

0.0538*** 

-

0.0321*** 
-40% 

 [0.0073] [0.0030]  [0.0096] [0.0039] [0.0065] [0.0042] 

                    

N    209,628     429,750       148,914     348,138      201,546     348,138   

N clusters     11,646      23,875          8,273      19,341        11,197      19,341    

 

4.3 Dynamic effects 
 

Figure 5 Event Study, whole 1 SD caliper sample, all groups 

 

In this section we provide further information about the significant pre and post-treatment effects, 

interpreting them as manifestations of the four “ideal types” of effect dynamics depicted in figure 

1. Only systematic effects are examined, i.e., those whose significance was observed in more than 

one “subsample”, namely: (i) all PA types, (ii) only indigenous lands, (iii and iv) only subnational 
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or national conservation units, (v and vi) only Brazil with or without institutional covariates. The 

event studies here described, which contain all groups, without any attempt to rule out significant 

pre-treatment effects, are found in figure 5 and in appendix 2. 

[Positive ex-post at lag -2] A noteworthy finding is the positive pre-protection effect on 

deforestation observed at lag -2 in all five samples, except for the one involving only indigenous 

lands (figure 5; Appendix 2, figures A.2.1.1, A.2.2.1, to A.2.3.1). This effect can be attributed to 

the group treated in 2006. Its deforestation level in 2004 was larger than unprotected pixels. The 

group’s pixels were evenly distributed between subnational and national conservation units in 

Brazil and most of them belonged to “direct-use” units, which are more permissive regarding 

resource extraction and land usage (Nolte et al., 2013). Importantly, this positive pre-treatment 

effect counterbalanced the negative pre-treatment effect of the 2009 group which was also 

captured into lag -2’s effect. 

[Positive ex-post at lag -10 in TIs] Positive and negative pre-treatment effects on deforestation at 

lags -10 and -9, respectively, were observed for the case of indigenous lands and in the Brazilian 

sample with institutional covariates. Focussing on indigenous lands, the two effects were due to 

the group treated in 2016. It must be highlighted that even with the effects observed many years 

before creation, they were still within the time span that indigenous lands take to be created 

(FUNAI, 2023)14. This suggests that these effects may be evidence of deforesters’ forward-

looking behaviour. The initially perceived gain, ten years before protection, from rushing to 

harvest forest resources and claim land, may disappear after one year as deforesters learn that 

governmental presence truly increased in the zone that is to be protected. 

[Systematic fire effects] Negative pre-protection effects on fires four years and eleven years 

before protection were systematically observed across all (1-SD-caliper-matched) sub-samples 

(except, for the pre-effect at lag -4, for subnational conservation units). Whereas the pre-effect at 

lag -4 had its origin in Brazilian national conservation units and indigenous lands, the one at lag 

-11 also occurred in subnational conservation units. The cohorts associated with these pre-

treatment effects were 2008, 2009 and 2016, for the case of lag -4, and 2016 for lag -11 (judging 

for the most recurrent critical group in each case). 

[CUs more negative pre-treat effects] Another peculiarity of conservation units’ event studies for 

deforestation is six positive pre-treatment effects, considering both national and subnational units 

(at lags -13, -7, -5, -3, -2, -1), whereas only one positive pre-treatment effect was observed in 

indigenous lands (at lag -10). This is another evidence that conservation units are more prone to 

experiencing rises in deforestation prior to protection. A similar, albeit weaker, pattern was 

 
14 The average duration of the creation process was of 10.5 years among the 127 Brazilian indigenous lands 

whose initial and final phases of creation dates were both available and consistent – meaning, by 

consistency, the initial date coming before the final date. 
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observed for fires. Whereas conservation units presented two or three positive pre-treatment 

effects, indigenous lands presented only one. A related result is that the lack of overall 

significance of subnational PAs against deforestation was due, in the sample without critical 

groups, to the significant inhibition effect up to the fifth year after creation being counterbalanced 

by a “stimulation effect”, i.e., a larger inner deforestation, seven years and also ten to twelve years 

after creation. The same was observed for fires, whose level was larger inside subnational units 

than in unprotected land, with positive post-protection effects observed in leads 2, 8, 9, 11, 13, 

14. 

[Post-treatment patterns] Regarding post-treatment effects on deforestation, two prominent 

patterns emerge. Firstly, a two-year delay in the impact was observed only in indigenous lands. 

This could be attributed to enforcement not increasing immediately after the creation of 

indigenous lands (BenYishay et al. 2017). Secondly, a (approximately gradual) effect 

magnification was observed in all six subsamples (appendix 3, figures A.2.1.1, A.2.2.1, up to 

A.2.6.1, but except for A2.4.1). It is an evidence that enforcement staff take time to learn how to 

improve their performance. Gradual magnification was also true for fires, except in the case of 

subnational units, where fires were more frequent than in unprotected land. Such pattern may be 

both evidence of “learning-by-enforcing” and, relatedly, of reduced deforestation, which is a main 

purpose of fire usage. A delayed decrease was also true in indigenous land, but at one year after 

protection. 

5 Discussion 

A methodological contribution was made in this study by devising and applying a novel causal 

inference approach to estimate the impact of protected areas’ on deforestation, which was robust 

to self-selection of sites for protection, to the staggered nature of protection, to unobservable 

drivers of protection and to confounders capturing concurrent environmental policies. The 

proposed analytical framework includes two key components, which are new to the literature 

branch assessing PAs’ effect. First, cohort-time refined effect estimates. Second, an event study 

examination of effect’s dynamics across protection length. It was demonstrated the need to 

remove some cohorts in order to ensure identification by the means of the parallel trends 

assumption, something ignored so far in the specific literature at the cost of a considerable bias, 

as here evidenced. These exclusions refined the variation found in the observational dataset 

available, isolating its causal component. Besides ensuring identification, the approach unveiled 

important dynamic patterns in the effect, including a deforestation above the unprotected level at 

two years before protection and a progressively magnified decrease after protection, the latter also 

the case for fires. Furthermore, specific dynamics were observed by type of PA, with conservation 

units being more exposed to pre-protection rises in deforestation and fires, while indigenous lands 

experienced a delayed post-protection decrease in deforestation, but not in fires. 
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The different effects of the different PA types, detected in the present paper, align with previous 

research in the field. A larger effect on deforestation was estimated by Nelson and Chomitz (2011, 

table 7) for indigenous lands, but, conversely, Amin et al. (2019), estimated conservation units to 

have a bigger effect. Diverging from the two studies and also from this paper, Herrera et al. (2010) 

estimated equivalent effects for the two PA types. But the greatest opposition to this paper’s 

results, in which indigenous lands had the first and second largest inhibition effect on 

deforestation and fires, respectively, comes from BenYishay et al. (2017), who found a null effect 

of such PA type15. The divergence may be due to three differences with the analysis here 

conducted. First, BenYishay et al’s. (2017) estimates relied strictly on before-and-after variation, 

as their sample contained only indigenous lands. In contrast, in this paper and in the majority of 

studies measuring deforestation inhibition by indigenous’ lands - which all found a significantly 

negative effect -, the control group is made of non-PAs (Nelson and Chomitz, 2011, Qin et al., 

2023, Herrera et al., 2019, Amin et al., 2019). This is an issue because indigenous people generally 

already inhabit the land whose property right they claim. Therefore, pressure on forest resources 

after recognition should not change considerably, exactly as BenYishay et al. (2017) found. 

Secondly, the author’s measure of deforestation is a proxy that does not directly captures forest 

suppression, differing from the metric adopted here and in most of the literature. Third, despite 

that authors have also relied on matching, their period of analysis started eight years before the 

one adopted in this paper. To finish, the delayed impact of indigenous lands on deforestation, here 

uncovered, may be a reason why the authors, by ignoring effect dynamics, failed to attest the 

effectiveness of such change. 

Pixels of different treatment statuses were impacted differently by concurrent policies in the cases 

of deforestation and fires (unprotected and protected, respectively, being more impacted). But in 

both cases the impact was negative, i.e., concurrent policies reduced the specific forest 

disturbance. What finds parallel in previous studies. Many of them have demonstrated the 

effectiveness of the Brazilian deforestation control program from 2004 to 2014, which involved 

not only the creation of PAs, but also rationing of agricultural credit to illegal deforesters and 

increasing on-site and remote monitoring and sanctioning (Assunção et al., 2020, Hargrave and 

Kis-Katos, 2013, Börner et al., 2015). Nevertheless, despite some studies measuring the PA effect 

mentioning, en passant, these concomitant interventions, none have explicitly controlled for them 

in their empirical analyses. A rather indirect approach, of breaking down analysis in pre and post-

2004 sub-periods, was followed by Pfaff et al. (2015). This, despite automatically eliminating 

confounders in the pre-2004 period, fails to deliver a bias-free estimate reflecting the post-2004 

sub-period, which is the most policy-relevant phase, given the substantial change in the incentives 

 
15 This explanation is in direct opposition to what is argued by Nelson and Chomitz (2011) regarding fires 

at the Latin American and Caribbean level. 
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to deforestation triggered by the enhanced policy (Börner et al., 2015). Nevertheless, Pfaff et al.’s 

(2015) and this paper’s results converge for deforestation, but not for fires. The authors found a 

slightly lower effect in the post-2004 sub-period and here, similarly, a smaller effect on 

deforestation was detected without controlling for the non-PA policies strengthened after 2004. 

But a larger effect was found for fires, a discrepancy with Pfaff et al., (2015) which resides in two 

particularities of this paper. First that non-PA policies were explicitly controlled for. Second, the 

analysis period begun four years later and ended twelve years after. Additionally, BenYishay et 

al. (2017) found no influence of post-2004 policy strengthening, after interacting a 2004 binary 

variable with indigenous land legalization (a measure of the stage of completion of indigenous 

lands’ creation), at odds with the results in this paper, which may be attributed to the differences 

between this and authors’ studies, as described in the previous paragraph. 

Despite not assessed by previous studies, the PA effect dynamics found in this paper aligns with 

results and arguments from other papers. For instance, the enhancement of the effect on 

deforestation and fires along the post-protection period is both in line with studies of PA 

enforcement arguing that such activity is subject to learning and also with the few empirical 

results showing that the effect increases along protection time (Geldman et al. 2015, Afriyie et 

al., 2021, West et al., 2022, fig.5, Duncanson et al., 2023). For another side, the post-protection 

rise in fires inside subnational PAs could be due to enforcement being reduced some years after 

creation, in line with studies pointing that protection is only effective under diligent monitoring 

and sanctioning (Lima and Peralta, 2017, p.810, Kuempel et al., 2018, Afriyie et al., 2021). 

Regarding pre-protection effects, conservation units sometimes undergo a conflicting process of 

creation, with contestation from local actors (Brito, 2010, p.63, Temudo, 2012, Pedlowski et al., 

2013). This could explain the six positive pre-protection effects on deforestation that conservation 

units were exposed to, the most notorious of them occurring two years before creation. The 

significance of such pre-treatment effect was unequivocal and persistent even after elimination of 

some groups, being a robust finding of this paper which has no parallel in the literature so far. 

Fires were also subject to (a few) positive pre-protection effects. The policy relevance of these 

findings is clear: policymakers should be aware that the creation of conservation units induces a 

“forest rush” two years before its legal completion, so that enforcement in the zone to be legally 

protected must be increased in advance as a preventative measure. 

A leap in deforestation was observed by about the moment that the legal process of indigenous 

land establishment is started, which is of 10.5 years before completion. This suggests a potential 

rush to appropriate land and forest resources before prohibition. This is in line with Baragwhanath 

and Bayi (2020) result that only areas where indigenous property has been fully legally recognized 

can reduce deforestation. But, diverging from authors’ results, the leap was followed, in the ninth 

year before full recognition of indigenous rights, by a fall in deforestation, probably due to the 
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increased presence of the State during the early phase of PA creation. This is an indication that 

the mere possibility of indigenous property recognition may change the behavior of forward-

looking deforesters. 

6 Concluding remarks 

The results achieved show that PAs' effects estimates from previous studies are likely to be biased 

due to unobservable drivers of protection effectiveness, uniform aggregation of PA cohorts with 

heterogeneous effects, non-parallel trends and failure to control for simultaneous non-protection 

policy. We showed that the parallel trends assumption is powerful enough to avoid these biases, 

together with explicit policy covariates, provided that cohorts are appropriately selected. This last 

task, which has been so far ignored in PA literature, must become a standard practice, the same 

way that matching is. 

The non-robustness of the magnitudes of fires’ effects to the “critical groups” selection approach 

shows that consistent justification of criteria is needed, as well as an assessment of robustness. A 

related implication is that different PA cohorts may have different histories of deforestation 

inhibition, being more and less effective at different stages of their lifetime, another reason for 

avoiding aggregations that treats them as homogeneous. 

The policy implications of the findings are noteworthy. The effect dynamics must be accounted 

for in the cost-benefit analysis informing decisions about creating new protected areas. They may 

make a difference depending on the social discount rate adopted. Importantly, policy-makers 

should also be aware that publicizing the information that a site will be protected may lead to an 

increase in forest disturbance, as forward-looking deforesters anticipate losing access to forest 

resources. This possibility proved strong enough in regards to conservation units capacity to 

inhibit deforestation, outweighing any perceived increases in enforcement during the creation 

process. 

Emphasis should be placed on the “forest rush” effect observed two years before the creation of 

conservation units. It is a warning that PA creation should not be seen solely as a legal process of 

changing the tenure status of a geographical zone, but, more broadly, as means to align the 

expectations of forward-looking deforesters with governmental conservation goals. That means 

signalling that sanction probability will not only increase after creation, but immediately, thus 

leaving no time for rushing to exploit resources. 
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Appendix 1 Matching quality, all PAs 

A.1 Deforestation 
In the first stage of analysis, a one-to-one covariate matching with replacement on the 

Mahalanobis distance metric was pursued. It induced a clear improvement in the level of covariate 

balance, as compared with the matched sample. A slight further improvement was achieved with 

the introduction of the 1 SD caliper, but a more restrictive caliper, of half SD, brought no 

improvement (Table A.1.1, figures A.1.1 to A.1.4). 

Table A.1.1  Matching sample sizes and percentage of covariates whose balance was “of 

concern” or “bad” 

 

Matching  Treated   Control   Total  % reduction %concern %bad 

Before matching     33,469       90,753    124,222  0% 22 35 

No caliper     33,469         6,849      40,318  -68% 5 0 

1 SD Caliper     26,755         6,284      33,039  -73% 0 0 

0.5 SD Caliper     14,973         4,627      19,600  -84% 0 0 

 

Figure A.1.1 Common support graph, non-caliper matching, before matching (left) and 

after matching (right) 
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Figure A.1.2 Common support graph, 1SD-caliper matching, before matching (left) and 

after matching (right) 
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Figure A.1.3 Balance graph, non-caliper matching 
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Figure A.1.4 Balance graph, 1SD-caliper matching 

 

 

A.2 Fires 
The covariate set used for matching in the case of fires was the same as in the case of deforestation, 

except for two additional variables, primary and secondary deforestation. Because of that small 

difference, nearly the same matching quality results were achieved (visually, i.e., in graphical 

terms, the results seem to be exactly equal; see graphs A.1.5 to A.1.8 below). 

 

Table A.1.2  Matching sample sizes and percentage of covariates whose balance was “of 

concern” or “bad” 

Matching  Treated   Control   Total  % redux %concern %bad 

Before matching     33,469       90,753    124,222  0% 21 37 

No caliper     33,469         6,867      40,336  -68% 6 0 

1 SD Caliper     26,648         6,262      32,910  -74% 0 1 

0.5 SD Caliper     14,774         4,522      19,296  -84% 0 0 
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Figure A.1.5 Common support graph, non-caliper matching, before matching (left) and 

after matching (right) 

 

 

Figure A.1.6 Common support graph, 1SD-caliper matching, before matching (left) and 

after matching (right) 
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Figure A.1.7 Balance graph, non-caliper matching, before matching (left) and after 

matching (right) 

 

 

Figure A.1.8 Balance graph, 1SD-caliper matching, before matching (left) and after 

matching (right) 
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Appendix 2 Event study plots 
 

A.2.1 Whole 1-SD caliper sample 

A.2.1.1  All groups 
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Figure A.2.1.1 Event Study for deforestation, whole 1 SD caliper sample, all groups (blue = 

pre-treatment, red = post-treatment) 

 

Figure A.2.1.2 Event Study for fires, whole 1 SD caliper sample, all groups (blue = pre-

treatment, red = post-treatment) 
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A.2.1.2 Without critical groups 
Figure A.2.1.3 Event Study for deforestation, whole 1 SD caliper sample, without critical 

groups 

 

Figure A.2.1.4 Event Study for fires, whole 1 SD caliper sample, without critical groups 
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A.2.2 Brazil-only sample (with institutional covariates) 

A.2.2.1  All groups 
Figure A.2.2.1 Event Study for deforestation, Brazil-only sample with institutional 

variables, all groups 

 

Figure A.2.2.2 Event Study for fires, Brazil-only sample with institutional variables, all 

groups 
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A.2.2.2 Without critical groups 
Figure A.2.2.3 Event Study for deforestation, Brazil-only sample with institutional 

variables, without critical groups 

 

Figure A.2.2.4 Event Study for fires, Brazil-only sample with institutional variables, 

without critical groups 
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A.2.3 Brazil-only sample (without institutional covariates) 

A.2.3.1 All groups 
Figure A.2.3.1 Event Study for deforestation, Brazil-only sample without institutional 

variables, all groups 

Figure A.2.3.2 Event Study for fires, Brazil-only sample without institutional variables, all 

groups 
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A.2.3.2 Without critical groups 
Figure A.2.3.3 Event Study for deforestation, Brazil-only sample without institutional 

variables, without critical groups 

 

Figure A.2.3.4 Event Study for fires, Brazil-only sample without institutional variables, 

without critical groups 
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A.2.4 Subnational conservation units 

A.2.4.1 All groups 
Figure A.2.4.1 Event Study for deforestation, Subnational conservation units, all groups 

 

Figure A.2.4.2 Event Study for fires, Subnational conservation units, all groups 
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A.2.4.2 Without critical groups 
Figure A.2.4.3 Event Study for deforestation, Subnational conservation units, without 

critical groups 

 

Figure A.2.4.4 Event Study for fires, Subnational conservation units, without critical 

groups 
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A.2.5 National conservation units 

A.2.5.1 All groups 
Figure A.2.5.1 Event Study for deforestation, National conservation units, all groups 

 

Figure A.2.5.2 Event Study for fires, National conservation units, all groups 
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A.2.5.2 Without critical groups 
Figure A.2.5.3 Event Study for deforestation, National conservation units, without critical 

groups 

 

OBS: not all critical groups were excluded because only one group would have remained, which was 

considered to lead to a non-reliable (too specific) overall ATT. That is why significant pre-treatment effects 

remained. 

Figure A.2.5.4 Event Study for fires, National conservation units, without critical groups 
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A.2.6 Indigenous lands 

A.2.6.1 All groups 
Figure A.2.6.1 Event Study for deforestation, Indigenous lands, all groups 

 

Figure A.2.6.2 Event Study for fires, Indigenous lands, all groups 
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A.2.6.2 Without critical groups 
Figure A.2.6.3 Event Study for deforestation, Indigenous lands, without critical groups 

 

Figure A.2.6.4 Event Study for fires, Indigenous lands, without critical groups 
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A.2.7 Indirect use conservation units 

A.2.7.1 All groups 
Figure A.2.7.1 Event Study for deforestation, indirect conservation units, all groups 

 

Figure A.2.7.2 Event Study for fires, indirect conservation units, all groups 
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A.2.7.2 Without critical groups 
Figure A.2.7.3 Event Study for deforestation, indirect conservation units, without critical 

groups 

 

Figure A.2.7.4 Event Study for fires, indirect conservation units, without critical groups 
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A.2.8 Direct use conservation units 

A.2.8.1 All groups 
Figure A.2.8.1 Event Study for deforestation, indirect conservation units, all groups 

 

Figure A.2.8.2 Event Study for fires, indirect conservation units, all groups 
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A.2.8.2 Without critical groups 
Figure A.2.8.3 Event Study for deforestation, direct conservation units, without critical 

groups 

 

Figure A.2.8.4 Event Study for fires, direct conservation units, without critical groups 
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Appendix 3 The DSGE model 
Table A.4 Parameters assumed in the simulations 

Parameter Name Assumed level Source 

μ 
Marginal utility of 

consumption 
0.5 Zhang and Zhang (2020) 

η CRRA coefficient 2 

Costa-Jr and Cintado 
(2018, table 3), Lucas 
(1999) and Klima et al. 

(2019) 

β Discount factor 0.99 

Klima et al. (2019), 
Annicchiarico et al.(2012) 
and Palma and Portugal 

(2014). 

δ Capital depreciation rate 0.0824 Carvalho and Castro (2017) 

ψ Land depreciation rate 0.0824 Assumed by authors 

α 
Power of capital in 
production function 

0.36 
Costa-jr & Cintado (2018, 

table 3) 

β_prod 
Power of labor in 

production function 
0.48 Assumed by authors 

σ 
Probability of deforestation 

detection 
0.1 Assumed by authors 

θ 
Fine rate (applied to 
deforestation in PAs) 

0.5 Assumed by authors 

α_PA 
Ratio of the shares of PA in 

deforestation and in 
forestland 

1 Assumed by authors 

ρ_J AR(1) coefficient of TFP 0.95 
Costa Jr. and Cintado 

(2018) and approximation 
of Miao (2014, page 474). 

σ_J 
Standard error of the TFP 

shock 
0.01 Idem 

ρ_γ_0 
AR(1) intercept of protected 

share of forest 
0.1 Assumed by authors 

ρ_γ_1 
AR(1) coefficient of 

protected share of forest 
0.5 Assumed by authors 

m0 
Cost of deforestation (per 

hectare) 
0.8 Assumed by authors 

 

The dynamic system of the DSGE model is found below. It was simulated in Dynare®. 

𝑐𝑡 =
𝜇

1 − 𝜇
(1 − 𝑙𝑡

𝑠)𝑤𝑡(1) 

𝑤𝑡
(1−𝜂)𝜇−1(1 − 𝑙𝑡

𝑠)−𝜂 = 𝛽E0[𝑤𝑡+1
(1−𝜂)𝜇−1(1 − 𝑙𝑡+1

𝑠 )−𝜂(𝑟𝑡+1 + 1 − 𝛿)](2) 

𝑤𝑡
(1−𝜂)𝜇−1(1 − 𝑙𝑡

𝑠)−𝜂(𝑚0 + 𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡)

= 𝛽E0 [𝑤𝑡+1
(1−𝜂)𝜇−1(1 − 𝑙𝑡+1

𝑠 )−𝜂[𝑠𝑡+1 + (1 − 𝜓)(𝑚0 + 𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡+1)]] (3) 

𝑘𝑡
𝑠 = (1 − 𝛿)𝑘𝑡−1

𝑠 + 𝑤𝑡−1𝑙𝑡−1
𝑠 + 𝑟𝑡−1𝑘𝑡−1

𝑠 + 𝑠𝑡−1𝑎𝑡−1
𝑠 + 𝜋𝑡−1 + 𝑡𝑡−1 − (𝑚0 + 𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴,𝑡−1)𝑑𝑡−1

− 𝑐𝑡−1(4) 

𝑎𝑡
𝑠 = (1 − 𝜓)𝑎𝑡−1

𝑠 + 𝑑𝑡−1(5) 
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𝛼𝐽𝑡 (
𝑘𝑡

𝑠

𝑙𝑡
𝑠 )

𝛼−1

(
𝑎𝑡

𝑠

𝑙𝑡
𝑠 )

1−𝛼−𝛽_𝑝𝑟𝑜𝑑

= 𝑟𝑡(6) 

𝛽_𝑝𝑟𝑜𝑑𝐽𝑡 (
𝑘𝑡

𝑠

𝑙𝑡
𝑠 )

𝛼

(
𝑎𝑡

𝑠

𝑙𝑡
𝑠 )

1−𝛼−𝛽_𝑝𝑟𝑜𝑑

= 𝑤𝑡(7) 

(1 − 𝛼 − 𝛽_𝑝𝑟𝑜𝑑)𝐽𝑡 (
𝑘𝑡

𝑠

𝑙𝑡
𝑠 )

𝛼

(
𝑎𝑡

𝑠

𝑙𝑡
𝑠 )

−𝛼−𝛽_𝑝𝑟𝑜𝑑

= 𝑠𝑡  (8) 

𝜎. 𝜃. α𝑃𝐴γ𝑃𝐴 = 𝑡𝑡(9) 

𝛾𝑃𝐴,𝑡 = 𝜌𝛾,0 + 𝜌𝛾,1𝛾𝑃𝐴,𝑡−1(11) 

log (𝐽𝑡) = 𝜌𝐽log (𝐽𝑡−1) + 𝜀𝐽,𝑡;   𝜀𝐽,𝑡~𝑖𝑖𝑑(0, 𝜎𝐽
2) (12) 

 


